SINGULAR HYPERSURFACES
POSSESSING INFINITELY MANY STAR POINTS

FILIP COOLS AND MARC COPPENS

(Communicated by Lev Borisov)

ABSTRACT. We prove that a component \(\Lambda \) of the closure of the set of star points on a hypersurface of degree \(d \geq 3 \) in \(\mathbb{P}^N \) is linear. Afterwards, we focus on the case where \(\Lambda \) is of maximal dimension and the case where \(X \) is a surface.

1. INTRODUCTION

Consider a hypersurface \(X \) of degree \(d \geq 3 \) in a projective space \(\mathbb{P}^N \) defined over the field \(\mathbb{C} \) of complex numbers. A smooth point on \(X \) is called a star point if and only if the intersection of \(X \) with the embedded tangent space \(T_P(X) \) is a cone with vertex \(P \). As explained in [2], this notion is a generalisation of total inflection points on plane curves. It is also a generalisation of the classical notion of an Eckardt point on a smooth cubic surface in \(\mathbb{P}^3 \) (see [3, 9, 10]). Star points on smooth hypersurfaces have been studied in [2], where it is proven that such hypersurfaces contain only finitely many star points. Star points on singular cubic surfaces in \(\mathbb{P}^3 \) have been examined in [1, 10, 11]. In particular, in [11] the author investigates a singular cubic surface containing infinitely many star points and formulates some general expectations about it.

In Section 2 of this article, we prove that each component \(\Lambda \) of the closure of the set of star points of \(X \) is a linear subspace of dimension \(0 \leq \lambda \leq N - 2 \). Moreover, each smooth point \(P \) in \(\Lambda \) has the same tangent space \(\Pi \), and \(\Pi \cap X \) is a cone with vertex \(\Pi \). Note that for smooth hypersurfaces, we always have \(\lambda = 0 \). In Section 3 we study the case where \(\Lambda \) is of maximal dimension, i.e. \(\lambda = N - 2 \). We prove that either all such \((N - 2)\)-dimensional linear spaces \(\Lambda \) belong to the same hyperplane in \(\mathbb{P}^N \) or they contain a common \((N - 3)\)-dimensional linear space. In the first case, there are at most \(d \) such linear spaces \(\Lambda \); in the second case, there are at most \(3d \) such linear spaces \(\Lambda \). To finish the article, in Section 4 we consider surfaces in \(\mathbb{P}^3 \) having a line \(L \) of star points. We show that in general such a line contains \(d - 1 \) singularities of \(X \) of type \(A_{d-1} \). Conversely, the presence of such singularities implies that \(L \) is a line of star points. We also make some remarks in more special cases. On the one hand, our results give contradictions to the expectations in [1]; on the other hand, we place them in a much more general situation. Finally, we show that star points on a line of star points can be considered as a limiting case.
of a special type of isolated star points. This generalises results of [12] for cubic surfaces.

2. Main theorem

We work over the field \(\mathbb{C} \) of complex numbers.

Definition 2.1. Let \(X \) be an irreducible reduced hypersurface of degree \(d \geq 3 \) in \(\mathbb{P}^N \) and let \(P \) be a smooth point on \(X \). We say that \(P \) is a star point on \(X \) if and only if \(T_P(X) \cap X \) is a cone with vertex \(P \).

Example 2.2. Assume that \(X \) is an irreducible reduced hypersurface of degree \(d \geq 3 \) in \(\mathbb{P}^N \) and that \(\Pi \) is a hyperplane in \(\mathbb{P}^N \) such that the scheme \(\Pi \cap X \) is a cone with vertex \(\Lambda \) (here \(\Lambda \) is a linear subspace of \(\Pi \)). In case \(\Lambda \) is not contained in \(\text{Sing}(X) \), then all points of \((X \setminus \text{Sing}(X)) \cap \Lambda\) are star points of \(X \). In particular, \(\Lambda \) is contained in the closure of the set of star points on \(X \). In case \(P \in \Lambda \) is a smooth point of \(X \), then \(T_P(X) = \Pi \); hence all those star points have the same tangent space to \(X \).

Example 2.3. Let \(V \) be a plane in \(\mathbb{P}^N \) and let \(\Gamma \) be an irreducible plane curve of degree \(d \) in \(V \). Consider an \((N - 3)\)-dimensional linear subspace \(L \) of \(\mathbb{P}^N \) such that \(L \cap V = \emptyset \) and let \(X \) be the cone on \(\Gamma \) with vertex \(L \). If \(Q \) is a total inflection point of \(T \) with tangent line \(T \), then each point \(P \in (Q, L) \setminus L \) is a star point of \(X \) and \(T_P(X) = (T, L) \). In particular, \((Q, L)\) is contained in the closure of the locus of star points on \(X \) and all those star points have the same tangent space to \(X \).

Remark 2.4. It should be noted that Example 2.3 is a special case of Example 2.2. Here \(\Pi = (T, L) \) and \(\Pi \cap X \) is a divisor on \(\Pi \) equal to \(d \Lambda \) with \(\Lambda = (Q, L) \); hence it is a cone with vertex \(\Lambda \).

The following theorem implies that Example 2.2 is the typical example.

Theorem 2.5. Let \(X \) be an irreducible reduced hypersurface of degree \(d \) in \(\mathbb{P}^N \) and let \(\Lambda \) be a component of the closure of the locus of star points on \(X \). Then \(\Lambda \) is a linear subspace of \(\mathbb{P}^N \) of some dimension \(0 \leq \lambda \leq N - 2 \), and there is a hyperplane \(\Pi \) in \(\mathbb{P}^N \) containing \(\Lambda \) such that \(\Pi \cap X \) is a cone in \(\Pi \) with vertex \(\Lambda \). In particular, \(\Pi \) is the tangent space to \(X \) at all smooth points of \(X \) contained in \(\Lambda \). Moreover, in case \(\dim(\Lambda) = N - 2 \), then \(\Pi \cap X \) is equal to \(d \Lambda \) as a divisor on \(\Pi \).

Corollary 2.6. The set of hyperplanes that do occur as tangent spaces to \(X \) at star points is finite.

Proof of Theorem 2.5. Let \((\mathbb{P}^N)^*\) be the dual projective space of hyperplanes in \(\mathbb{P}^N \). We are going to make use of the Gauss map \(\gamma : X \dashrightarrow (\mathbb{P}^N)^* \), which maps a smooth point \(P \) of \(X \) to the tangent hyperplane \(T_P(X) \) of \(X \) at \(P \). The tangent map \(d_P \gamma : T_P(X) \rightarrow T_{\gamma(P)}((\mathbb{P}^N)^*) \) can be described by the second fundamental form (see [4] Section 2.4.1)

\[
\Pi_P : T_P(X) \times T_P(X) \rightarrow N_P(X),
\]

where \(N_P(X) \) is the normal line to \(X \) at \(P \). To be precise, for \(\Pi_P \), the subspaces \(T_P(X) \) and \(N_P(X) \) of \(\mathbb{P}^N \) should be replaced by their inverse images in \(\mathbb{C}^{N+1} \). Consider its kernel \(K_P = \{ v \in T_P(X) \mid \Pi_P(v, w) = 0 \text{ for all } w \in T_P(X) \} \). If \(F = 0 \) is the equation of \(X \), then (see [4] Section 2.4.2)

\[
K_P = \{ v \in T_P(X) \mid v \cdot \text{Hess}_P F \cdot w^T = 0 \text{ for all } w \in T_P(X) \},
\]
where \(\text{Hess}_p F = \left[\frac{\partial^2 F}{\partial x_i \partial x_j} (P) \right]_{i,j} \) is the Hessian matrix of \(F \) at \(P \). It is easy to see that in case \(P \) is a star point of \(X \), it follows that \(K_P = T_P(X) \). Indeed, using a coordinate transformation if necessary, we may assume that \(P = (1:0:\ldots:0) \) and \(T_P(X) = Z(X_1) \). Since \(P \) is a star point, the defining polynomial \(F \) of \(X \) is of the form \(X_1 g(X_0,\ldots,X_N) + h(X_2,\ldots,X_N) \). Hence, the Hessian is of the form

\[
\text{Hess}_p F = \begin{bmatrix}
0 & *_{0,1} & 0 & \ldots & 0 \\
*_{1,0} & *_{1,1} & *_{1,2} & \ldots & *_{1,N} \\
0 & *_{2,1} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & *_{N,1} & 0 & \ldots & 0
\end{bmatrix}
\]

and \(v \cdot \text{Hess}_p F \cdot w^T = 0 \) for all \(v, w \in T_P(X) \).

Now let \(\Lambda \) be a component of the closure of the locus of star points on \(X \). Consider the restriction \(\gamma|_{\Lambda} : \Lambda \to (\mathbb{P}^N)^* \). The previous argument implies that \(d_P(\gamma|_{\Lambda}) = 0 \) for \(P \in \Lambda \) in general; hence \(\gamma|_{\Lambda} \) is constant at the smooth points. In case \(X \) is smooth, this implies that \(X \) has finitely many star points because \(\gamma \) is a finite morphism in that case. In general, we find a hyperplane \(\Pi \in (\mathbb{P}^N)^* \) such that \(T_P(X) = \Pi \) for each \(P \in \Lambda \) smooth on \(X \). So for \(P \in \Lambda \) general, \(\Pi \cap X \) is a cone with vertex \(V \) containing \(P \). Hence \(V \) is a linear subspace of \(\mathbb{P}^N \) containing \(\Lambda \) and each point \(P \in V \) smooth on \(X \) is a star point of \(X \). This implies \(V = \Lambda \), finishing the proof. \(\square \)

Example 2.7. Let \(X \) be a hypersurface in \(\mathbb{P}^N \) and assume that a linear subspace \(\Lambda \) of dimension \(0 \leq \lambda \leq N - 2 \) is a component of the closure of the set of star points on \(X \). Let \(\Pi \) be the tangent space \(T_P(X) \) of a smooth point \(P \in \Lambda \). We can choose projective coordinates \((X_0 : X_1 : \ldots : X_N) \) on \(\mathbb{P}^N \) such that \(\Lambda \) has equation \(X_{\lambda+1} = \ldots = X_N = 0 \) and \(\Pi \) has equation \(X_{\lambda+1} = 0 \). We can write the defining polynomial \(f \) of \(X \) as \(X_{\lambda+1} h + g \), where \(g \) is independent of the variable \(X_{\lambda+1} \). The intersection of \(X \) with the hyperplane \(\Pi \) is a cone with vertex \(\Lambda \). On the other hand, it is defined by \(g = 0 \); hence \(g \) is independent of \(X_0, \ldots, X_\lambda \). So we get that the polynomial \(f \) is of the form

\[
X_{\lambda+1} h(X_0,\ldots,X_N) + g(X_{\lambda+2},\ldots,X_N).
\]

We conclude that there exists a family of hypersurfaces of dimension

\[
\binom{N + d - 1}{N} + \binom{N + d - \lambda - 2}{N - \lambda - 2} - 1
\]

such that each member \(X \) has star points in \(\Lambda \setminus (\Lambda \cap \text{Sing}(X)) \). If \(X \) is a general element of the family, its singular locus is given by \(X_{\lambda+1} = \ldots = X_N = h(X_0,\ldots,X_N) = 0 \), so \(\text{Sing}(X) \) is a hypersurface of degree \(d - 1 \) in \(\Lambda \).

3. Extremal Case

In this section, we consider the case where \(\lambda \) is maximal, i.e. \(\lambda = N - 2 \) (see Theorem 2.5). Assume there do exist two such linear subspaces \(\Lambda_1 \) and \(\Lambda_2 \) of \(X \). Let \(\Pi_1 \) and \(\Pi_2 \) be the corresponding hyperplanes in \(\mathbb{P}^N \). Then we have that \(\dim(\Pi_2 \cap \Lambda_1) = N - 3 \). Since \(\Pi_2 \cap \Lambda_1 \subset \Pi_2 \cap X = \Lambda_2 \), we get that \(\dim(\Lambda_1 \cap \Lambda_2) = N - 3 \) and therefore \(\dim((\Lambda_1,\Lambda_2)) = N - 1 \).
Assume Λ_4 is another such linear subspace of dimension $N - 2$ and assume Λ_3 does not contain $\Lambda_1 \cap \Lambda_2$. Since $\dim(\Lambda_1 \cap \Lambda_3) = N - 3$ and $\dim(\Lambda_2 \cap \Lambda_3) = N - 3$, it follows that $\Lambda_3 \subset (\Lambda_1, \Lambda_2)$.

Proposition 3.1. Let X be an irreducible reduced hypersurface in \mathbb{P}^N and let S be the set of $(N - 2)$-dimensional linear subspaces Λ of X such that a general element of Λ is a star point of X. If S has at least two elements, then one of the following two possibilities holds:

1. There exists a linear subspace L of dimension $N - 3$ such that all such $\Lambda \in S$ do contain L.

2. There exists a linear subspace H of dimension $N - 1$ such that all such $\Lambda \in S$ are contained in H.

Remark 3.2. Cones over plane curves do give examples of Case 1 in Proposition 3.1. If we are in Case 1 and if S has at least d elements, the hypersurface X will automatically be a cone over a plane curve with vertex L. Indeed, assume there are d such linear spaces $\Lambda_1, \ldots, \Lambda_d \in S$. They correspond to d different tangent hyperplanes Π_1, \ldots, Π_d. Take $P \in L$ general and $Q \in X$ general. It is enough to prove that $\langle P, Q \rangle \subset X$. Choose a plane V containing P and Q such that $L_i = \Pi_i \cap V$ are d different lines through P. Let $\gamma = V \cap X$ be considered as a divisor on V. Since $\Pi_i \cap X = d\Lambda_i$ as a divisor on Π_i and L_i is a line on Π_i through P, it follows that $D_i = dP$ as a divisor on L_i is a closed subscheme of γ. Let V' be the blowing-up of V at P, let E be the associated exceptional divisor on V' and let L'_i (resp. γ') be the proper transform of L_i (resp. γ) on V'. In case the multiplicity of γ would be smaller than d, we have that γ' contains $L'_i \cap E$ for $1 \leq i \leq d$. Since the lines L_i are d different lines, it follows that γ' contains d different points of E, which contradicts the assumption. This implies that the multiplicity of γ at P is equal to d; hence $\langle P, Q \rangle \subset \gamma \subset X$ since $Q \in \gamma$.

It follows that in this case the set S contains at most $3d$ linear subspaces, since a plane curve of degree d has at most $3d$ total inflection points (see e.g. [3], IV, Ex. 2.3(e))). Equality holds for the cone over the Fermat curve of degree d.

Remark 3.3. In Case 2 the set S contains at most d such linear subspaces, since $H \cap X$ is a divisor of degree d in H.

Example 3.4. Assume that X is a hypersurface satisfying Case 2 and that S has d elements $\Lambda_1, \ldots, \Lambda_d \subset H$ corresponding to the tangent spaces Π_1, \ldots, Π_d. We can choose projective coordinates $(X_0 : \ldots : X_N)$ on \mathbb{P}^N such that H has equation $X_N = 0$ and Π_i has equation $l_i(X_0, \ldots, X_N) = 0$; hence Λ_i is defined by $X_N = l_i = 0$. One can see that the equation of X is of the form

$$f(X_0, \ldots, X_N) = \prod_{i=1}^{d} l_i(X_0, \ldots, X_N) + \alpha X_N^d = 0$$

with $\alpha \in \mathbb{C}$; hence there is a 1-dimensional family of hypersurfaces having star points in the general points of $\Lambda_1, \ldots, \Lambda_d$.

4. **Surfaces in \mathbb{P}^3 with a Line of Star Points**

In this section, we consider the special case where $N = 3$ and $\lambda = 1$, so X is a surface of degree $d \geq 3$ in \mathbb{P}^3 and Λ is a line on X such that the smooth points of X contained in Λ are star points of X. We can take projective coordinates
\(X_0 : X_1 : X_2 : X_3\) on \(\mathbb{P}^3\) such that \(\Lambda\) has equation \(X_2 = X_3 = 0\) and \(\Pi\) has equation \(X_2 = 0\). From Example 2.7 it follows that the equation of \(X\) can be written as \(f \equiv X_2h(X_0, X_1, X_2, X_3) + g(X_3) = 0\). We may take \(g(X_3) \equiv X_3^d\). If we write \(h(X_0, X_1, X_2, X_3)\) as

\[
X_3L_3(X_0, X_1, X_2, X_3) + X_2L_2(X_0, X_1, X_2) + L(X_0, X_1),
\]

the intersection \(\text{Sing}(X) \cap \Lambda\) is defined by \(X_2 = X_3 = L(X_0, X_1) = 0\). Assume \(\text{Sing}(X) \cap \Lambda\) consists of \(d - 1\) different points. We can choose the coordinates so that \(P_0 = (1 : 0 : 0 : 0)\) is one of those points, so \(L(1, 0) = 0\); hence \(L(X_0, X_1) = X_1L_1(X_0, X_1)\) and \(L_1(1, 0) \neq 0\). Consider the affine coordinates \((x_1, x_2, x_3)\) on the chart \(X_0 \neq 0\) as local coordinates around \(P_0\) (so \(x_i = X_i/X_0\)). Using these coordinates, \(X\) is defined by

\[
f \equiv x_2(x_3l_3(x_1, x_2, x_3) + x_2l_2(x_1, x_2) + x_1l_1(x_1)) + x_3^d,
\]

where \(l_i\) is the polynomial corresponding to the form \(L_i\). The transformation defined by

\[
\begin{cases}
y_1 = x_3l_3(x_1, x_2, x_3) + x_2l_2(x_1, x_2) + x_1l_1(x_1), \\
y_2 = x_2, \\
y_3 = x_3
\end{cases}
\]

is a transformation of local coordinates since \(l_1(0) \neq 0\). The equation of \(X\) in the local coordinate system \((y_1, y_2, y_3)\) is \(y_1y_2 + y_3^d\). Using a second transformation of local coordinates defined by

\[
\begin{cases}
z_1 = \frac{y_1 + y_2}{2}, \\
z_2 = \frac{(y_1 - y_2)}{2}, \\
z_3 = y_3,
\end{cases}
\]

the equation of \(X\) becomes \(z_1^2 + z_2^2 + z_3^d = 0\); hence \(P_0\) is an \(A_{d-1}\)-singularity of \(X\). We conclude that the \(d - 1\) points in \(\text{Sing}(X) \cap \Lambda\) are \(A_{d-1}\)-singularities if they are pairwise different. The following proposition states that the converse also holds.

Proposition 4.1. Let \(X \subset \mathbb{P}^3\) be a surface of degree \(d \geq 3\). Assume \(\Lambda\) is a line on \(X\) such that \(\Lambda \not\subset \text{Sing}(X)\) and assume \(\Lambda\) contains \(d - 1\) \(A_{d-1}\)-singularities of \(X\). Then a general point of \(\Lambda\) is a star point of \(X\).

Proof. We can choose projective coordinates on \(\mathbb{P}^3\) so that \(\Lambda\) is given by \(X_2 = X_3 = 0\). The equation of \(X\) can be written as

\[
X_3g(X_0, X_1, X_3) + X_2(X_3L_3(X_0, X_1, X_2, X_3) + X_2L_2(X_0, X_1, X_2) + L(X_0, X_1)).
\]

The intersection \(\text{Sing}(X) \cap \Lambda\) is defined by

\[
X_2 = X_3 = g(X_0, X_1, 0) = L(X_0, X_1) = 0
\]

and contains \(d - 1\) points, so there exists a complex number \(\alpha\) such that \(g(X_0, X_1, 0) \equiv \alpha L(X_0, X_1)\). The tangent space \(\Pi\) at a smooth point on \(\Lambda\) has equation \(X_2 + \alpha X_3 = 0\). We can change the coordinates on \(\mathbb{P}^3\) so that \(\alpha = 0\); hence \(g(X_0, X_1, 0) \equiv 0\). Write \(X_3g(X_0, X_1, X_3) = X_3^m G(X_0, X_1, X_3)\), where \(m\) is maximal. Note that \(m \geq 2\) and we need to prove that \(m = d\). Let \(\Gamma\) be the curve defined by \(X_2 = G(X_0, X_1, X_3) = 0\); hence \(X \cap \Pi = m\Gamma + \Gamma\) as divisors on \(\Pi\). Since \(\Gamma \cap \Lambda\) consists of at most \(d - m < d - 1\) points, we can take a point \(P \in \text{Sing}(X) \cap \Lambda\) such that \(P \not\subset \Gamma \cap \Lambda\). We can also take the coordinates on \(\mathbb{P}^3\) such that \(P = (1 : 0 : 0 : 0)\). It is easy to see that \(P\) is an \(A_{m-1}\)-singularity; hence \(m = d\). \(\square\)
having infinitely many star points. However, this is not true. Indeed, as a trivial
that paper, the author expects this is the only case giving rise to cubic surfaces
having infinitely many star points. However, this is not true. Indeed, as a trivial
example, one can consider a cone X over a cubic curve Γ. In this case, a smooth
inflection point on Γ corresponds to a line of star points with exactly one singular
point of X and this singularity is not even rational. More generally, assume Λ
contains only one singular point of a cubic surface X. By taking projective coordinates
$(X_0 : X_1 : X_2 : X_3)$ on \mathbb{P}^3 as before (such that Λ has equation $X_2 = X_3 = 0$ and Π
has equation $X_2 = 0$), we can write the equation of the surface X as
\[f \equiv X_2(X_3L_3(X_0, X_1, X_2, X_3) + X_2L_2(X_0, X_1, X_2) + L(X_0, X_1)) + X_3^2 = 0, \]
where L is a square. We may assume that $L(X_0, X_1) = X_1^2$; hence the only singular
point of X on Λ is $P = (1 : 0 : 0 : 0)$. The intersection of the plane $X_3 = 0$ and the
surface consists of the line Λ and the conic with equation $X_3 = X_2L_2(X_0, X_1, X_2) + \frac{1}{2}X_3^2 = 0$. This conic is non-singular if $L_2(1, 0, 0) \neq 0$. In that case, the surface X
has a unique singular point on Λ (of type A_5 if $L_3(0, 0, 0, 1) \neq 0$ and type E_6 if
$L_3(0, 0, 0, 1) = 0$); hence this case is also different from the example in Π. Of
course, both examples are specialisations of the example in Π. In that way, the
statement of Π can be adjusted and generalised as follows.

Theorem 4.3. Let X be a surface of degree $d \geq 3$ in \mathbb{P}^3 and assume there is an
irreducible curve Λ on X such that a general point of Λ is a star point on X. Then
Λ is a line in \mathbb{P}^3 and there exists a 1-parameter family $(X(t), \Lambda(t))$ with $X(0) = X$,
$\Lambda(0) = \Lambda$ and such that for $t \neq 0$, $X(t)$ is a surface of degree d in \mathbb{P}^3 and $\Lambda(t)$ is a
line on $X(t)$ containing $d - 1$ A_{d-1}-singularities of $X(t)$. In particular, a general
point on $\Lambda(t)$ is a star point on $X(t)$.

In a particular case of a surface X with a line Λ of star points, we can say
something about the types of the singularities of X on Λ if there are less than $d - 1$
singular points of X on Λ.

Lemma 4.4. Let X be a surface in \mathbb{P}^3 of degree $d \geq 3$ defined by an equation of
the form
\[f \equiv X_2(X_3X_0^{d-2} + X_1^2L(X_0, X_1)) + X_3^2 = 0, \]
with $L(1, 0) \neq 0$. Then $P = (1 : 0 : 0 : 0)$ is a singularity of X of type A_{d-1}.

Proof: We are going to work with the affine coordinates (x_1, x_2, x_3) on the chart
$X_0 \neq 0$ (so $x_i = X_i/X_0$). The equation of X becomes
\[f \equiv x_2(x_3 + x_1^0l(x_1)) + x_3^2 = 0, \]
with $l(x_1)$ the polynomial corresponding to the form $L(X_0, X_1)$. We are interested
in the singularity P in the origin. Consider the transformation
\[
\begin{align*}
 y_1 &= x_1, \\
 y_2 &= x_2, \\
 y_3 &= x_3 + x_1^0l(x_1)
\end{align*}
\]
Proof. Lemma 4.4 implies that for\(f(y_1, y_2, y_3)\), the equation of \(X \) is given by
\[
f \equiv y_2y_3 + [y_3 - y_1^d l(y_1)]^d
\]
\[
\equiv y_2y_3 + \sum_{i=1}^{d} \binom{d}{i} y_3^i (-y_1^d l(y_1))^{d-i} + (-l(y_1))^{d} y_1^{d} y_{1,\alpha}^{\alpha} = 0.
\]
In the local coordinate system defined by
\[
\begin{aligned}
z_1 &= y_1, \\
z_2 &= y_2 + \sum_{i=1}^{d} \binom{d}{i} y_3^{i-1} (-y_1^d l(y_1))^{d-i}, \\
z_3 &= y_3,
\end{aligned}
\]
the equation of \(X \) becomes \(z_2z_3 + (-l(z_1))^{d} z_1^{\alpha} = 0 \). Since \(l(0) \neq 0 \), there exists a power series \(l'(x) \) such that \((l'(x))^{\alpha} = -l(x) \). Finally, in the coordinate system defined by
\[
\begin{aligned}
w_1 &= l'(z_1)z_1, \\
w_2 &= \frac{z_2 + z_3}{2}, \\
w_3 &= \frac{l(z_2 - z_3)}{2},
\end{aligned}
\]
the surface \(X \) is locally given by \(w_1^{\alpha} + w_2^{d} + w_3^{d} = 0 \); hence \(P \) is a singularity of type \(A_{d,\alpha - 1} \). \(\square \)

Proposition 4.5. Let \(X \) be a surface in \(\mathbb{P}^3 \) of degree \(d \geq 3 \) defined by an equation of the form
\[
f \equiv X_2(X_3L_3(X_0, X_1, X_2, X_3) + X_2X_2L_2(X_0, X_1, X_2) + L(X_0, X_1)) + X_3^d = 0,
\]
where \(L \) is fixed and \(L_2, L_3 \) are general. Then each smooth point on the line \(\Lambda \) defined by \(X_2 = X_3 = 0 \) is a star point and each singular point \(P = (a : b : 0 : 0) \) on \(\Lambda \) is of type \(A_{k(P)} \), where \(k(P) = d\alpha - 1 \) and \(\alpha \) is the multiplicity of the root \((a : b) \) of \(L = 0 \). So we have that
\[
(*) \quad \sum_{P \in \Lambda \setminus \text{Sing}(X)} \frac{k(P) + 1}{d} = d - 1.
\]

Proof. Lemma [1,4] implies that for \(L \) fixed, there exist polynomials \(L_2 \) and \(L_3 \) such that the singularities of \(X \) on the line \(\Lambda \) are all of the type \(A_k \) and satisfy formula [12]. From [7,8], it follows that such singularities are the least worse that can deform into \(d - 1 \) singularities of type \(A_{d-1} \); hence the generic statement follows. \(\square \)

The case of cubic surfaces is also investigated in [12]. Since in that paper (because of moduli reasons) only semi-stable surfaces are considered, for cubic surfaces with infinitely many star points only the example of [11] is obtained. In [12], the notion of star points is also introduced for singular points on a cubic surface. We can generalise this notion as follows.

Definition 4.6. Let \(X \) be an irreducible hypersurface of degree \(d \geq 3 \) in \(\mathbb{P}^N \). A point \(P \) on \(X \) is called a **star point** on \(X \) if there exists a hyperplane \(\Pi \) in \(\mathbb{P}^N \) such that \(\Pi \cap X \) (as a scheme) is a cone with vertex \(P \).
Of course, in the case of surfaces in \(\mathbb{P}^3 \), a point \(P \) is a star point on \(X \) if and only if there exists a plane \(\Pi \) in \(\mathbb{P}^3 \) such that the reduced scheme associated to \(\Pi \cap X \) is a union of lines through \(P \). This corresponds to the definition of a star point in \cite{12} §4. Note that for smooth points on hypersurfaces, the two definitions are equivalent.

In \cite{12} §5, the notion of a proper star point is introduced. The meaning of this notion is not completely clear because it is defined with respect to a family, but in the situation of e.g. \cite{12} Proposition 5.3 there is no family. Probably, what the author means is the following (we give the general definition).

Definition 4.7. A star point \(P \) on \(X \) is a proper star point if there exists a 1-parameter family \((X(t), P(t))\) such that \(X(0) = X, P(0) = P \) and \(P(t) \) is a smooth star point on \(X(t) \) for \(t \neq 0 \).

Lemma 4.8. Each star point on a hypersurface of degree \(d \geq 3 \) is proper.

Proof. Let \(P \) be a star point on \(X \subset \mathbb{P}^N \). Using coordinates on \(\mathbb{P}^N \), we can assume \(P = (1 : 0 : \ldots : 0) \) and \(\Pi \) is the hyperplane in \(\mathbb{P}^N \) with equation \(X_1 = 0 \) (such that \(\Pi \cap X \) is a cone with vertex \(P \)). From Example 2.7 it follows that \(X \) has equation \(X_1 h(X_0, \ldots, X_N) + g(X_2, \ldots, X_N) = 0 \) with \(h \) (resp. \(g \)) homogeneous of degree \(d - 1 \) (resp. \(d \)). If we take general homogeneous forms \(H \) of degree \(d - 1 \) and \(G \) of degree \(d \), the surface with equation \(X_1 H(X_0, \ldots, X_N) + G(X_2, \ldots, X_N) = 0 \) is smooth and \(P \) is a star point on it. Now consider \(X(t) \) to be the surface with equation \(X_1 (h + tH) + (g + tG) = 0 \).

This proof is clearly much shorter than the proof in \cite{12} §5. In that proof, the cases of \(P \) being a singular point of type \(A_2 \), \(P \) a star point on a line connecting two \(A_1 \)-singularities and \(P \) a star point on a line connecting two \(A_2 \)-singularities are handled separately. For the first two cases, a blowing-up of \(\mathbb{P}^2 \) in 6 points is used to obtain the result of the lemma. In the third case, a sharper statement is obtained: a star point on a line connecting two \(A_2 \)-singularities is the limit of a star point on a line connecting two \(A_1 \)-singularities. We are going to generalise this result.

Theorem 4.9. Let \(X \) be a surface of degree \(d \geq 3 \) in \(\mathbb{P}^3 \) and let \(\Lambda \not\subset \text{Sing}(X) \) be a line containing \(d - 1 \) singularities of type \(A_{d-1} \). Let \(P \) be a smooth star point of \(X \) on \(\Lambda \). Then there is a 1-parameter family \((X(t), \Lambda(t), P(t))\) with \((X(0), \Lambda(0), P(0)) = (X, \Lambda, P)\) such that for \(t \neq 0 \) the line \(\Lambda(t) \) contains \(d - 1 \) \(A_{d-2} \)-singularities of the surface \(X(t) \) in \(\mathbb{P}^3 \) of degree \(d \) and \(P(t) \) is a smooth star point of \(X(t) \) on \(\Lambda(t) \).

Proof. First we make a note on surfaces \(X \) of degree \(d \) in \(\mathbb{P}^3 \) containing a line \(\Lambda \not\subset \text{Sing}(X) \) such that \(\Lambda \) contains \(d - 1 \) singularities of type \(A_{d-2} \). In the proof of Proposition 4.11 instead of \(m = d \), one obtains \(m = d - 1 \); hence the equation of \(X \) can be written as

\[
X_3^{d-1} g(X_0, X_1, X_3) + X_2 h(X_0, X_1, X_2, X_3) = 0
\]

and \(g(X_0, X_1, 0) \neq 0 \). The intersection of \(X \) and the plane \(\Pi \) with equation \(X_2 = 0 \) is equal to \((d - 1) \Lambda + L \), where the line \(L \) has equation \(X_2 = g(X_0, X_1, X_3) = 0 \). The set \(\text{Sing}(X) \cap \Lambda \) on the line \(\Lambda \) is given by \(L(X_0, X_1) = 0 \). In case the zero of \(g(X_0, X_1, 0) \) on \(\Lambda \) is also a zero of \(L(X_0, X_1) \), the corresponding point is an \(A_{d-1} \)-singularity; hence \(L \) intersects \(\Lambda \) at a smooth point \(P \) of \(X \). Clearly, the point is a star point of \(X \).
Now assume X contains a line $\Lambda \subset \text{Sing}(X)$ containing $d-1$ singularities of type A_{d-1}. As in the proof of Proposition [1], using suited coordinates, the equation of X can be written as

$$X_3^d + X_2(X_3L_3 + X_2L_2 + L(X_0, X_1)) = 0.$$

The $d-1$ A_{d-1}-singularities on Λ are the zeroes of $L(X_0, X_1) = 0$. Now take a point $P = (\alpha_0 : \alpha_1 : 0 : 0)$ on Λ with $L(\alpha_0, \alpha_1) \neq 0$, so P is smooth on X. Let $g(X_0, X_1) := \alpha_1X_0 - \alpha_0X_1$ and consider the surface $X(t)$ with equation

$$X_3^{d-1}(X_3 + tg(X_0, X_1)) + X_2(X_3L_3 + X_2L_2 + L(X_0, X_1)) = 0.$$

Then $\Lambda(t) := \Lambda$ is a line on $X(t)$ not contained in $\text{Sing}(X(t))$ and for $t \neq 0$ the surface $X(t)$ has exactly $d-1$ A_{d-2}-singularities on Λ. From the previous discussion, the point $P(t) := P$ is smooth on $X(t)$.

Now consider a cubic surface X in \mathbb{P}^3 and denote by S the closure of the union of all 1-dimensional families of star points on X. From Proposition [3] it follows that there are only two possibilities: either X is a cone on a cubic plane curve and then S is the union of lines through the vertex of X or there is a plane H and S is a union of lines in H. Consider the second case. We know each pair of A_2-singularities in X gives rise to a line inside S, so all A_2-singularities are contained in one plane H. In case X has at least three A_2-singularities, then S needs to be the union of three different lines in H. If the intersection P of two such lines would be a smooth point of X, since $X \cap H$ is singular at P, we would obtain $H = T_P(X)$. But $T_P(X) \cap X$ should be a cone (since P is a star point); hence P is not smooth on X. Therefore S consists of non-concurrent lines and the intersection points are A_2-singularities. This shows that X has at most three A_2-singularities. This is in accordance with known results; see e.g. [9].

Acknowledgements

The authors would like to thank Ciro Ciliberto for pointing out to them reference [1] and Alex Degtyarev for leading them to references [2] [3]. They would also like to thank the referee for pointing out a short argument that a smooth hypersurface cannot have infinitely many star points and for suggesting the use of a similar argument to prove Theorem 2.5. As a matter of fact, following that suggestion, the proof of the theorem became much shorter and very transparent.

Both authors are partially supported by the project G.0318.06 of the Fund of Scientific Research - Flanders (FWO), and the first author is a Postdoctoral Fellow of FWO.

References

Departement of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, B-3001 Leuven, Belgium

E-mail address: Filip.Cools@wis.kuleuven.be

E-mail address: Marc.Coppens@khk.be