This paper concerns a generalization of a theorem of Dan Gottlieb [5] motivated by a question of Dusa McDuff [12]. Let \(f : M \to N \) be a map of closed oriented connected manifolds of the same dimension \(n \). We suppose that \(M \) and \(N \) are pointed and that \(f \) preserves the base point. We consider the mapping space \(\text{Map}(M, N; f) \) of continuous maps homotopic to \(f \), and we denote by \(\omega : \text{Map}(M, N; f) \to N \) the evaluation map at the base point \(\ast \in M \), \(\omega(g) = g(\ast) \). In [5] Gottlieb proves that if \(\pi_1(\omega) : \pi_1(\text{Map}(M, N; f)) \to \pi_1(N) \) is non-zero, then either the degree of \(f \), \(\deg f = 0 \), or the Euler characteristic \(\chi(N) = 0 \).

In this paper we consider what happens with the higher order homotopy groups when \(M \) and \(N \) are simply connected. Recall first that in the case \(f = id_N \), the space \(\text{Map}(M, N; f) \) is the monoid \(\text{aut}_1(N) \) of self-equivalences of \(N \) homotopic to the identity. Then denote the evaluation map by \(ev : \text{aut}_1 N \to N \). The image of \(\pi_q(ev) \) is called the \(q^{\text{th}} \) Gottlieb group of \(N \), \(G_q(N) \). The groups \(G_q(N) \otimes \mathbb{Q} \) and the map \(ev \) have been intensively studied in rational homotopy. In particular, for each integer \(q \), \(G_{2q}(N) \otimes \mathbb{Q} = 0 \) and \(\sum_q \dim G_q(N) \otimes \mathbb{Q} < n \) [2]. On the other hand, by a result of G. Lupton and the author, \(\tilde{H}_s(ev; \mathbb{Q}) = 0 \) if \(\chi(N) \neq 0 \) [4]. See also [10], [11], [6] for more recent results on Gottlieb groups.

Since the composition with \(f \) induces a continuous map \(j_N : \text{aut}_1 N \to \text{Map}(M, N; f) \) satisfying \(\omega \circ j_N = ev \), we have the inclusion \(G_*(N) \subset \text{Im} \pi_*(\omega) \). Our main theorem is essentially a converse to this result.

Theorem 1.

1. If \(\deg f \neq 0 \), then \(\text{Im} \pi_*(\omega) \otimes \mathbb{Q} = G_*(N) \otimes \mathbb{Q} \).
2. If \(\deg f \neq 0 \) and \(\chi(N) \neq 0 \), then the composition of \(\pi_*(\omega) \) with the Hurewicz map \(\text{hur}_N : \pi_*(N) \otimes \mathbb{Q} \to H_*(N; \mathbb{Q}) \),
 \[
 \pi_*(\text{Map}(M, N; f)) \otimes \mathbb{Q} \to H_*(N; \mathbb{Q}),
 \]
 is zero.
An important step in the proof of Theorem 1 is given by Theorem 2.

Theorem 2. Suppose \(\deg f \neq 0 \). Then the injection \(j_N : \text{aut}_1(N) \to \text{Map}(M, N; f) \) induces an injection on the rational homotopy groups,

\[
\pi_*(j_N) \otimes \mathbb{Q} : \pi_*(\text{aut}_1(N)) \otimes \mathbb{Q} \to \pi_*(\text{Map}(M, N; f)) \otimes \mathbb{Q}.
\]

Moreover \(\pi_*(j_N) \otimes \mathbb{Q} \) admits a retraction \(\sigma \) satisfying \((\pi_*(\text{ev}) \otimes \mathbb{Q}) \circ \sigma = \pi_*(\omega) \otimes \mathbb{Q} \).

Now recall that a continuous map \(g : X \to Y \) is called a rational Gottlieb map if \(\pi_*(g) \otimes \mathbb{Q} \) maps \(G_*(X) \otimes \mathbb{Q} \) into \(G_*(Y) \otimes \mathbb{Q} \). For instance, when \(X \) is an odd-dimensional sphere \(S^q \), then \(g \) is a rational Gottlieb map if and only if \([g]\) belongs to the Gottlieb group \(G_*(Y) \otimes \mathbb{Q} \). We prove

Theorem 3. With the above notation, if \(\deg f \neq 0 \), then \(f \) is a rational Gottlieb map.

For the proofs, we use the machinery of rational homotopy theory as described for instance in [8]. We use more precisely the Poincaré duality model for manifolds given by Lambrechts and Stanley in [8] and the description of the rational homotopy groups of mapping spaces in terms of derivations given by Lupton and Smith in [9].

1. A Convenient Model for \(f \)

A Poincaré duality model for a simply connected Poincaré duality complex \(X \) of dimension \(n \) is a commutative differential graded algebra \((A, d) \) quasi-isomorphic to the Sullivan minimal model of \(X \) and satisfying Poincaré duality in dimension \(n \). This means that there exists a linear map \(\varepsilon : A^n \to \mathbb{Q} \) such that \(\varepsilon(dA^{n-1}) = 0 \) and such that the induced bilinear forms

\[
A^k \otimes A^{n-k} \to \mathbb{Q}, \quad a \otimes b \mapsto \varepsilon(ab)
\]

are non-degenerate. Such a map \(\varepsilon \) is then called an orientation.

Theorem 4 (Lambrecht, Stanley [8]).

1. If \((A, d) \) is a commutative differential graded algebra whose cohomology is a simply connected Poincaré duality algebra, then \((A, d) \) is weakly equivalent to a commutative differential graded algebra \((A', d) \) that is a simply connected Poincaré duality algebra.

2. Moreover, if \(A \) is finite type, \(A^0 = \mathbb{Q} \), \(A^1 = 0 \), \(A^2 \subset \text{Kerd} \), and \(n \geq 7 \), then there is a quasi-isomorphism \(\varphi : (A, d) \to (A', d) \).

We deduce the following generalization,

Proposition 1. Let \(f : M \to N \) be a map between simply connected \(n \)-dimensional manifolds, \(n \geq 7 \). Suppose that \(H^2(f) \) is injective. Then \(f \) admits a Sullivan model of the form

\[
\varphi : (A, d) \to (B, d),
\]

where \((A, d) \) and \((B, d) \) are Poincaré duality algebras of dimension \(n \).

Proof. Let \(j : (\wedge V, d) \to (\wedge V \otimes \wedge W, D) \) be a relative minimal model for \(f \) and let \((\wedge V, d) \to (A, d) \) be a quasi-isomorphism with \((A, d) \) a Poincaré duality model for \(N \). By taking the tensor product \((A, d) \otimes (\wedge V, d) \), we get another model of \(f \),

\[
1 \otimes j : (A, d) \to (A \otimes \wedge W, D') := (A, d) \otimes (\wedge V, d) (\wedge V \otimes \wedge W, D).
\]

Since \(H^2(f) \) is injective, \((A \otimes \wedge W)^1 = 0 \). By Theorem 4(2) there then exists a quasi-isomorphism \(g : (A \otimes \wedge W, D') \to (B, d) \) where \((B, d) \) is a Poincaré duality model of \(M \). We define \(\varphi : (A, d) \to (B, d) \) by \(\varphi = g \circ (1 \otimes j) \).

\(\square \)
Our next proposition explains the structure of the model \(\varphi \) when \(\deg f \neq 0 \).

Proposition 2. With the above notation, if \(\deg f \neq 0 \), then

1. the map \(\varphi \) is injective,
2. the graded vector space \(B \) can be decomposed as \(B = \varphi(A) \oplus Z \), where \(d(Z) \subset Z \) and \(Z \cdot \varphi(A) \subset Z \).

Proof. Denote by \(\omega \) and \(\omega' \) rational fundamental classes of \(A \) and \(B \) with \(\varphi(\omega) = \omega' \), and denote by \(\varepsilon' \) the associated orientation of \(B \). In particular, \(\varepsilon(a) = \varepsilon'(\varphi(a)) \) for \(a \in A \). If \(\varphi(a) = 0 \) for some \(a \), then \(\varphi(\omega) = 0 \) because there is an element \(a' \) such that \(aa' = \omega \), and so \(\varphi \) is injective.

Denote
\[
Z = \{ x \in B \mid \varepsilon'(x \cdot \varphi(A)) = 0 \}.
\]
Choose a homogeneous basis \(h_1, \ldots, h_m \) of \(A \). Using the Poincaré duality of \(A \), there is another family \(\{ h_j^* \} \subset A \) such that \(\varepsilon(h_j^* \cdot h_i) = \delta_{ij} \), where \(\delta_{ij} \) is the Kronecker symbol. Then \(\varphi(h_1), \ldots, \varphi(h_m) \) and \(\varphi(h_1^*), \ldots, \varphi(h_m^*) \) are homogeneous bases of \(\varphi(A) \). If \(b \in B \), the element
\[
b' = b - \sum_j \varepsilon'(b \cdot \varphi(h_j)) \varphi(h_j^*)
\]
is in \(Z \). This shows that \(B = \varphi(A) \oplus Z \). Now for an element \(z \in Z \),
\[
\varepsilon'(dz \cdot \varphi(a)) = \varepsilon'(d(z \varphi(a))) - (-1)^{|z|} \varepsilon'(z \cdot d \varphi(a)) = 0.
\]
This shows that \(d(Z) \subset Z \). We also have \(Z \cdot \varphi(A) \subset Z \) because \(\varepsilon' [(z \cdot \varphi(a)) \cdot \varphi(A)] = 0 \).

2. **Model for mapping spaces**

In this section we recall the derivation model for the rational homotopy groups of a mapping space \(\text{Map}(X, Y; f) \), where \(X \) and \(Y \) are simply connected CW complexes and \(\dim X < \infty \). Recall that under those hypothesis, \(\text{Map}(M, N; f) \) is a nilpotent space whose rationalization is obtained by taking the composition with a rationalization of \(N \), \(\ell : N \to N_0 \) ([7]).

Let \(\ell : (\wedge V, d) \to (A, d) \) be a model for \(f \), with \((\wedge V, d) \) a Sullivan (non-necessarily minimal) model for \(Y \) and \((A, d) \) a connected model for \(X \). We consider the differential graded vector space \((\text{der}^\ell(\wedge V, A), \delta) \) of \(\ell \)-derivations, where \(\text{der}^\ell(\wedge V, A)_m \) is the vector space of linear maps of degree \(m \), \(\theta : (\wedge V)^* \to A^{* - m} \) for which \(\theta(xy) = \theta(x)\ell(y) + (-1)^{m|y|}\ell(x)\theta(y) \). The differential \(\delta \) is defined as usual by
\[
\delta \theta = d \circ \theta + (-1)^{m+1} \theta \circ d.
\]
From now on, we restrict to \(\text{Der}^\ell(\wedge V, A) \), the positive \(\ell \)-derivations,
\[
\text{Der}^\ell(\wedge V, A)_r = \begin{cases}
\text{der}^\ell(\wedge V, A)_r, & \text{if } r > 1, \\
Z \text{der}^\ell(\wedge V, A)_1, & \text{if } r = 1,
\end{cases}
\]
where \(Z \) denotes the space of cycles.

It is well known that if \(g : (\wedge W, d) \to (\wedge V, d) \) is a quasi-isomorphism, then the induced map \(\text{Der}^\ell(\wedge V, A) \to \text{Der}^{\ell g}(\wedge W, A) \) is a quasi-isomorphism. In the same way, if \(h : (A, d) \to (A', d) \) is a quasi-isomorphism, then the induced map \(\text{Der}^\ell(\wedge V, A) \to \text{Der}^{h \circ \ell}(\wedge V, A') \) is also a quasi-isomorphism (see for instance [1],
Theorem 2.8). The following theorem follows then directly from [9], where the theorem is proved when \((\wedge V,d)\) is minimal and \((A,d)\) is the minimal model of \(X\).

Theorem 5 ([9], [1], Theorem 3.8). With the above notation,

1. we have natural isomorphisms of graded vector spaces
 \[
 H_*(\text{Der}^f(\wedge V,A)) \cong \pi_*(\text{Map}_*(X,Y;f)) \otimes Q;

 H_*(\text{Der}^f(\wedge V,A^+)) \cong \pi_*(\text{Map}_*(X,Y;f)) \otimes Q,
 \]
 where \(\text{Map}_*(X,Y;f)\) denotes the subspace of \(\text{Map}(M,N;f)\) consisting of pointed maps.

2. Denote by \(\alpha : A \to Q\) the augmentation. Then the composition with \(\alpha\) induces a morphism of complexes that is a model for \(\pi_*(\omega) \otimes Q\); i.e., we have a commutative diagram
 \[
 H_*(\text{Der}^f(\wedge V,A)) \xrightarrow{\tilde{\alpha}} H_*(\text{Der}^\alpha(\wedge V,Q)) \cong H_*(\text{Hom}(V,Q)) \cong \pi_*(N) \otimes Q.
 \]

3. Proof of Theorem 2

We first consider the case \(n \geq 7\) and we use the notation of section 1. In particular, \(\varphi : (A,d) \to (B,d)\) is a model for \(f\), and \((A,d)\) and \((B,d)\) are Poincaré duality models for \(N\) and \(M\). Let \(\psi : (\wedge V,d) \to (A,d)\) be a surjective Sullivan model for \((A,d)\), and then let \(\rho = \varphi \circ \psi : (\wedge V,d) \to (B,d)\).

Recall that \(B = \varphi(A) \oplus Z\) with \(dZ \subset Z\) and \(Z : \varphi(A) \subset Z\). Then \(B = \rho(\wedge V) \oplus Z\) with \(Z : \rho(\wedge V) \subset Z\). Define a linear map
 \[
 \Phi : \text{Der}^\rho(\wedge V,B) \to \text{Der}^\psi(\wedge V,A)
 \]
by \(\Phi(\theta) = p \circ \theta\), where \(p : B \to \varphi(A) \cong A\) is the linear projection with kernel \(Z\).

Lemma 1. The morphism \(p \circ \theta\) is a \(\psi\)-derivation.

Proof. Write \(\theta(a) = x + z\) with \(z \in Z\) and \(x = \varphi(p\theta(a))\) and \(\theta(b) = x' + z'\) with \(z' \in Z\) and \(x' = \varphi(p\theta(b))\). Then,
 \[
 p\theta(ab) = p(\theta(a) \cdot \rho(b) + (-1)^{|a||\theta|}\rho(a) \cdot \theta(b))
 = p(x\rho(b) + (-1)^{|a||\theta|}\rho(a)x')
 = p(\varphi(p\theta(a)) \cdot \psi(b) + (-1)^{|\theta||a|}\varphi(p\theta(a)) \cdot p\theta(b))
 = p\theta(a) \cdot \psi(b) + (-1)^{|a||\psi|}\psi(a) \cdot p\theta(b).
 \]

Lemma 2. \(\Phi\) is a morphism of complexes.

Proof.
 \[
 \delta(p\theta) = dp\theta - (-1)^{|\theta|}(p\theta)d = p(d\theta) - (-1)^{|\theta|}p(\theta d) = p(\delta \theta).
 \]

Since \(A\) is a subalgebra of \(B\), the injection of \(A\) into \(B\) induces a morphism of complexes
 \[
 \Psi : \text{Der}^\psi(\wedge V,A) \to \text{Der}^\rho(\wedge V,B)
 \]
such that \(\Phi \circ \Psi = id_{\text{Der}^\psi(\wedge V,A)}\).
Proof of Theorem 2 when \(n \geq 7 \). When \(n \geq 7 \), Theorem 5 directly yields that the induced injection \(\Phi : \text{Der}^p(\wedge V, A) \to \text{Der}^p(\wedge V, B) \) induces in homology the morphism \(\pi_*([j_N] \otimes Q) \). A retraction \(\sigma \) to \(\pi_*([j_N] \otimes Q) \) is given by \(H_*(\Phi) \).

Now the commutativity of the diagram
\[
\begin{array}{ccc}
\text{Der}^p(\wedge V, B) & \xrightarrow{\hat{\alpha}} & \text{Der}^{\alpha \circ \hat{\alpha}}(\wedge V, Q) \\
\Phi \downarrow & & \| \\
\text{Der}^p(\wedge V, A) & \xrightarrow{\hat{\alpha}} & \text{Der}^{\alpha \circ \hat{\alpha}}(\wedge V, Q)
\end{array}
\]

implies in homology that \((\pi_*(\text{ev}) \otimes Q) \circ \sigma = \pi_*(\omega) \otimes Q \).

\[\blacksquare\]

Proof of Theorem 2 for \(n \leq 6 \). Let define \(g = f \times \text{id}_{S^6} : M \times S^6 \to N \times S^6 \). If \(f' \sim f \), then \(f' \times \text{id} \sim f \times \text{id} \). This defines a continuous map
\[e : \text{Map}(M, N; f) \to \text{Map}(M \times S^6, N \times S^6; f \times \text{id}) \, .\]

On the other hand, if \(g' : M \times S^6 \to N \times S^6 \) is homotopic to \(f \times \text{id} \), then we consider the composition
\[M \xrightarrow{h} M \times S^6 \xrightarrow{g'} N \times S^6 \xrightarrow{p} N \, , \]
where \(* \in S^6 \) is the base point, \(h(m) = (m, *) \) and \(p(r, x) = r \). Since \(pg'h \sim f \), this gives a continuous map
\[r : \text{Map}(M \times S^6, N \times S^6; f \times \text{id}) \to \text{Map}(M, N; f) \, .\]

Clearly \(r \circ e = \text{id} \); i.e., \(\text{Map}(M, N; f) \) is a retract of \(\text{Map}(M \times S^6, N \times S^6; f \times \text{id}) \).

Since \(\dim(\wedge N) \geq 7 \), we have a map \(\sigma \) making commutative the diagram
\[
\begin{array}{ccc}
\pi_*(\text{Map}(M, N; f)) \otimes Q & \xrightarrow{\pi_*(\omega)} & \pi_*(N) \otimes Q \\
\pi_*(\text{Map}(M \times S^6, N \times S^6, f \times \text{id})) \otimes Q & \xrightarrow{\pi_*(\omega)} & \pi_*(N \times S^6) \otimes Q \\
\sigma & & \| \\
\pi_*(\text{aut}_1(N \times S^6)) \otimes Q & \xrightarrow{\pi_*(\text{ev})} & \pi_*(N \times S^6) \otimes Q,
\end{array}
\]
where \(h'(n) = (n, *) \).

In the same way, \(\text{aut}_1(N) \) is a retract of \(\text{aut}_1(N \times S^6) \). Denote by \(i : \text{aut}_1(N) \to \text{aut}_1(N \times S^6) \) the natural injection. The retraction \(\tau \) associates to a map \(h : N \times S^6 \to N \times S^6 \) the composition
\[N \xrightarrow{h'} N \times S^6 \xrightarrow{h} N \times S^6 \xrightarrow{p} N \, .\]

By construction we have \(\text{ev} \circ \tau = p \circ \text{ev} \) and a commutative diagram
\[
\begin{array}{ccc}
\text{aut}_1(N) & \xrightarrow{\iota} & \text{aut}_1(N \times S^6) \\
\downarrow j_N & & \downarrow j_{N \times S^6} \\
\text{Map}(M, N; f) & \xrightarrow{i} & \text{Map}(M \times S^6, N \times S^6, f \times \text{id}) \, .
\end{array}
\]

Then \(\sigma' = (\pi_*(\tau) \otimes Q) \circ \sigma \circ (\pi_*(e) \otimes Q) \),
\[\pi_*(\text{Map}(M, N; f)) \otimes Q \to \pi_*(\text{Map}(M \times S^6, N \times S^6; f \times \text{id})) \otimes Q \to \pi_*(\text{aut}_1(N \times S^6)) \otimes Q \to \pi_*(\text{aut}_1(N)) \otimes Q \]
is a retraction of \(\pi_*(j_N) \otimes Q \), and by construction \((\pi_*(\text{ev}) \otimes Q) \circ \sigma' = \pi_*(\omega) \otimes Q \).

\[\blacksquare\]

Proof of Theorem 1. Theorem 2 shows that \(\text{Im} \pi_*(\omega) \otimes Q \subset G_*(N) \otimes Q \). This proves Theorem 1(1). If \(\chi(N) \neq 0 \), \(H_*\text{ev}; Q) = 0 \), and so by Theorem 2, \(h_{\text{ur}} \circ (\pi_*(\omega) \otimes Q) = h_{\text{ur}} \circ (\pi_*(\text{ev}) \otimes Q) \circ \sigma = h_{\text{ur}}\text{ev}; Q) \circ h_{\text{ur}}\text{aut}_1(N) \circ \sigma = 0 \).

\[\blacksquare\]
Proof of Theorem 3. Denote by $i_M : aut_1 M \to \text{Map}(M, N; f)$ the map associated to the composition with f. The commutativity of the diagram ($q \geq 1$)
\[
\begin{array}{cccc}
\pi_q(aut_1(M)) \otimes \mathbb{Q} & \xrightarrow{\pi_q(i_M)} & \pi_q(\text{Map}(M, N; f)) \otimes \mathbb{Q} & \xrightarrow{\sigma} & \pi_q(aut_1(N)) \otimes \mathbb{Q} \\
\downarrow \pi_q(ev) & & \downarrow \pi_q(ev) & & \downarrow \pi_q(ev) \\
\pi_q(M) \otimes \mathbb{Q} & \xrightarrow{\pi_q(f)} & \pi_q(N) \otimes \mathbb{Q} & & \pi_q(N) \otimes \mathbb{Q}
\end{array}
\]
shows that f maps $G_*(M) \otimes \mathbb{Q}$ into $G_*(N) \otimes \mathbb{Q}$. □

ACKNOWLEDGMENT

The author would like to thank the referee for helpful comments and suggestions.

REFERENCES

Institut Mathématique, Université Catholique de Louvain, 2, Chemin du Cyclotron, 1348 Louvain-La-Neuve, Belgium