Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Stability of planar waves in mono-stable reaction-diffusion equations


Authors: Guangying Lv and Mingxin Wang
Journal: Proc. Amer. Math. Soc. 139 (2011), 3611-3621
MSC (2010): Primary 35B35; Secondary 35K57
DOI: https://doi.org/10.1090/S0002-9939-2011-10767-6
Published electronically: February 18, 2011
MathSciNet review: 2813391
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with the asymptotic stability of planar waves in mono-stable reaction-diffusion equations in $ \mathbb{R}^n$, where $ n\geq2$. Under initial perturbation that decays at space infinity, the perturbed solution converges to planar waves as $ t\rightarrow\infty$. The convergence is uniform in $ \mathbb{R}^n$.


References [Enhancements On Off] (What's this?)

  • 1. X. F. Chen and J.-S. Guo, Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations, J. Differential Equations 184 (2002), 549-569. MR 1929888 (2003h:35107)
  • 2. R. A. Fisher, The advance of advantageous genes, Ann. Eugenics 7 (1937), 355-369.
  • 3. T. Kapitula, Multidimensional stability of planar traveling waves, Trans. Amer. Math. Soc. 349 (1997), 257-269. MR 1360225 (97d:35104)
  • 4. A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Etude de l'equation de la diffusion avec croissance de la quantite de matiere et son application a un probleme biologique, Bull. Univ. Moskov. Ser. Internat. Sect. 1 (1937), 1-25.
  • 5. C. D. Levermore and J. X. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation II, Comm. Partial Differential Equations 17 (1992), 1901-1924. MR 1194744 (94c:35105)
  • 6. G. Y. Lv and M. X. Wang, Nonlinear stability of travelling wave fronts for delayed reaction diffusion equations, Nonlinearity 23 (2010), 845-873. MR 2602017
  • 7. H. Matano, M. Nara and M. Taniguchi, Stability of planar waves in the Allen-Cahn equation, Comm. Partial Differential Equations 34 (2009), 976-1002. MR 2560308 (2010j:35289)
  • 8. G. Raugel and K. Kirchgässner, Stability of fronts for a KPP-system, II: The critical case, J. Differential Equations 146 (1998), 399-456. MR 1631295 (2000j:35133)
  • 9. D. H. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv. Math 22 (1976), 312-355. MR 0435602 (55:8561)
  • 10. A. I. Volpert, V. A. Volpert and V. A. Volpert, Traveling wave solutions of parabolic systems, Translation of Mathematicial Monographs, Vol. 140, Amer. Math. Soc., Providence, RI, 1994. MR 1297766 (96c:35092)
  • 11. J. X. Xin, Multidimensional stability of traveling waves in a bistable reaction-diffusion equation I, Comm. Partial Differential Equations 17 (1992) 1889-1899. MR 1194743 (94c:35104)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35B35, 35K57

Retrieve articles in all journals with MSC (2010): 35B35, 35K57


Additional Information

Guangying Lv
Affiliation: Department of Mathematics, Southeast University, Nanjing 210018, People’s Republic of China
Email: gyLvmaths@126.com

Mingxin Wang
Affiliation: Science Research Center, Harbin Institute of Technology, Harbin 150080, People’s Republic of China
Email: mxwang@hit.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-2011-10767-6
Keywords: Traveling wave fronts, stability, upper and lower solutions, reaction-diffusion equation.
Received by editor(s): March 7, 2010
Received by editor(s) in revised form: March 20, 2010, August 16, 2010, and August 29, 2010
Published electronically: February 18, 2011
Additional Notes: The first author is supported by the JSPS Innovation Program CX09$B_{-}$044Z and the Scientific Research Foundation of the Graduate School of Southeast University (YBJJ1009).
The second author is supported by PRC Grants NSFC 10771032 and 11071049.
Communicated by: Yingfei Yi
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society