A differential geometric characterization of the Cayley hypersurface

Authors:
Zejun Hu, Cece Li and Dong Zhang

Journal:
Proc. Amer. Math. Soc. **139** (2011), 3697-3706

MSC (2010):
Primary 53A15; Secondary 53B25, 53B30

DOI:
https://doi.org/10.1090/S0002-9939-2011-10772-X

Published electronically:
February 21, 2011

MathSciNet review:
2813399

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The so-called Cayley hypersurface, constructed by Eastwood and Ezhov, is a higher-dimensional extension of the classical Cayley surface. In this paper, we establish a differential geometric characterization of the Cayley hypersurface, which is an answer to Eastwood and Ezhov's question.

**1.**N. Bokan, K. Nomizu and U. Simon,*Affine hypersurfaces with parallel cubic forms*, Tôhoku Math. J.**42**(1990), 101-108. MR**1036477 (90m:53018)****2.**Y. Choi and H. Kim,*A characterization of Cayley hypersurface and Eastwood and Ezhov conjecture*, Internat. J. Math.**16**(2005), 841-862. MR**2168070 (2006g:53075)****3.**F. Dillen and L. Vrancken,*-dimensional affine hypersurfaces in with parallel cubic form*, Nagoya Math. J.**124**(1991), 41-53. MR**1142975 (92m:53016)****4.**F. Dillen and L. Vrancken,*Generalized Cayley surfaces*, Proceedings of the Conference on Global Analysis and Global Differential Geometry, Berlin, 1990, Lecture Notes in Mathematics,**1481**, Springer, 1991, 36-47. MR**1178516 (93m:53011)****5.**F. Dillen and L. Vrancken,*Hypersurfaces with parallel difference tensor*, Japan J. Math. (N.S.)**24**(1998), 43-60. MR**1630113 (99e:53013)****6.**F. Dillen, L. Vrancken and S. Yaprak,*Affine hypersurfaces with parallel cubic form*, Nagoya Math. J.**135**(1994), 153-164. MR**1295822 (95f:53096)****7.**M. Eastwood and V. Ezhov,*Cayley hypersurfaces*, Proc. Steklov Inst. Math.**253**(2006), 221-224. MR**2338700 (2008i:53012)****8.**Z.J. Hu and C.C. Li,*The classification of -dimensional Lorentzian affine hypersurfaces with parallel cubic form*, preprint (2010).**9.**Z.J. Hu, H. Li, U. Simon and L. Vrancken,*On locally strongly convex affine hypersurfaces with parallel cubic form. I*, Diff. Geom. Appl.**27**(2009), 188-205. MR**2503972 (2010b:53015)****10.**Z.J. Hu, H. Li and L. Vrancken,*Characterizations of the Calabi product of hyperbolic affine hyperspheres*, Results in Math.**52**(2008), 299-314. MR**2443493 (2009i:53006)****11.**Z.J. Hu, H. Li and L. Vrancken,*Locally strongly convex affine hypersurfaces with parallel cubic form*, J. Diff. Geom., to appear.**12.**M. Magid and K. Nomizu,*On affine surfaces whose cubic forms are parallel relative to the affine metric*, Proc. Japan Acad. Ser. A Math. Sci.**65**(1989), 215-218. MR**1030183 (90m:53021)****13.**K. Nomizu and U. Pinkall,*Cayley surfaces in affine differential geometry*, Tôhoku Math. J. (2)**41**(1989), 589-596. MR**1025324 (90j:53010)****14.**K. Nomizu and T. Sasaki,*Affine differential geometry*, Cambridge University Press, 1994. MR**1311248 (96e:53014)****15.**L. Vrancken,*Affine higher order parallel hypersurfaces*, Ann. Fac. Sci. Toulouse Math. (5)**9**(1988), 341-353. MR**1425270 (97g:53073)****16.**L. Vrancken,*The Magid-Ryan conjecture for equiaffine hyperspheres with constant sectional curvature*, J. Diff. Geom.**54**(2000), 99-138. MR**1815413 (2001m:53022)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
53A15,
53B25,
53B30

Retrieve articles in all journals with MSC (2010): 53A15, 53B25, 53B30

Additional Information

**Zejun Hu**

Affiliation:
Department of Mathematics, Zhengzhou University, Zhengzhou 450052, People’s Republic of China

Email:
huzj@zzu.edu.cn

**Cece Li**

Affiliation:
Department of Mathematics, Zhengzhou University, Zhengzhou 450052, People’s Republic of China

Email:
ceceli@sina.com

**Dong Zhang**

Affiliation:
Department of Mathematics, Zhengzhou University, Zhengzhou 450052, People’s Republic of China

Email:
zd20082100333@163.com

DOI:
https://doi.org/10.1090/S0002-9939-2011-10772-X

Keywords:
Cayley hypersurface,
differential geometric characterization,
parallel cubic form

Received by editor(s):
April 29, 2010

Received by editor(s) in revised form:
August 26, 2010

Published electronically:
February 21, 2011

Additional Notes:
This project was supported by grants of the NSFC (No. 10671181 and No. 11071225)

Communicated by:
Jianguo Cao

Article copyright:
© Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.