Super-additive sequences and algebras of polynomials

Author:
Keith Johnson

Journal:
Proc. Amer. Math. Soc. **139** (2011), 3431-3443

MSC (2010):
Primary 13F20; Secondary 05A10, 11C08

Published electronically:
March 4, 2011

MathSciNet review:
2813375

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If is a field with discrete valuation and , then an algebra has associated to it a sequence of fractional ideals with consisting of 0 and the leading coefficients of elements of of degree no more than and a sequence of integers with . Combinatorial properties of this integer sequence reflect algebraic properties of , and these are used to identify the degrees of generators of and to characterize finitely generated algebras by a periodicity property of this sequence.

**[1]**Manjul Bhargava,*𝑃-orderings and polynomial functions on arbitrary subsets of Dedekind rings*, J. Reine Angew. Math.**490**(1997), 101–127. MR**1468927**, 10.1515/crll.1997.490.101**[2]**Manjul Bhargava,*The factorial function and generalizations*, Amer. Math. Monthly**107**(2000), no. 9, 783–799. MR**1792411**, 10.2307/2695734**[3]**Manjul Bhargava,*On 𝑃-orderings, rings of integer-valued polynomials, and ultrametric analysis*, J. Amer. Math. Soc.**22**(2009), no. 4, 963–993. MR**2525777**, 10.1090/S0894-0347-09-00638-9**[4]**Manjul Bhargava, Paul-Jean Cahen, and Julie Yeramian,*Finite generation properties for various rings of integer-valued polynomials*, J. Algebra**322**(2009), no. 4, 1129–1150. MR**2537676**, 10.1016/j.jalgebra.2009.04.017**[5]**Jacques Boulanger and Jean-Luc Chabert,*Asymptotic behavior of characteristic sequences of integer-valued polynomials*, J. Number Theory**80**(2000), no. 2, 238–259. MR**1740513**, 10.1006/jnth.1999.2432**[6]**Paul-Jean Cahen and Jean-Luc Chabert,*Integer-valued polynomials*, Mathematical Surveys and Monographs, vol. 48, American Mathematical Society, Providence, RI, 1997. MR**1421321****[7]**Francis Clarke,*Self-maps of 𝐵𝑈*, Math. Proc. Cambridge Philos. Soc.**89**(1981), no. 3, 491–500. MR**602302**, 10.1017/S0305004100058382**[8]**Keith Johnson,*𝑃-orderings of finite subsets of Dedekind domains*, J. Algebraic Combin.**30**(2009), no. 2, 233–253. MR**2525060**, 10.1007/s10801-008-0157-9**[9]**Keith Johnson,*Limits of characteristic sequences of integer-valued polynomials on homogeneous sets*, J. Number Theory**129**(2009), no. 12, 2933–2942. MR**2560844**, 10.1016/j.jnt.2009.04.006**[10]**Lars Peter Østerdal,*Subadditive functions and their (pseudo-)inverses*, J. Math. Anal. Appl.**317**(2006), no. 2, 724–731. MR**2209592**, 10.1016/j.jmaa.2005.05.039**[11]**A. Ostrowski,*Uber Ganzwertige Polynome in Algebraischen Zahlkorper*, J. Reine Angew. Math. (Crelle)**149**(1919), 117-124.**[12]**G. Polya,*Uber Ganzwertige Polynome in Algebraischen Zahlkorper*, J. Reine Angew. Math. (Crelle)**149**(1919), 97-116.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
13F20,
05A10,
11C08

Retrieve articles in all journals with MSC (2010): 13F20, 05A10, 11C08

Additional Information

**Keith Johnson**

Affiliation:
Department of Mathematics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada

Email:
johnson@mathstat.dal.ca

DOI:
https://doi.org/10.1090/S0002-9939-2011-10785-8

Received by editor(s):
May 21, 2010

Received by editor(s) in revised form:
August 30, 2010

Published electronically:
March 4, 2011

Communicated by:
Irena Peeva

Article copyright:
© Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.