Super-additive sequences and algebras of polynomials

Author:
Keith Johnson

Journal:
Proc. Amer. Math. Soc. **139** (2011), 3431-3443

MSC (2010):
Primary 13F20; Secondary 05A10, 11C08

DOI:
https://doi.org/10.1090/S0002-9939-2011-10785-8

Published electronically:
March 4, 2011

MathSciNet review:
2813375

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If is a field with discrete valuation and , then an algebra has associated to it a sequence of fractional ideals with consisting of 0 and the leading coefficients of elements of of degree no more than and a sequence of integers with . Combinatorial properties of this integer sequence reflect algebraic properties of , and these are used to identify the degrees of generators of and to characterize finitely generated algebras by a periodicity property of this sequence.

**[1]**M. Bhargava,*-orderings and polynomial functions on arbitrary subsets of Dedekind rings*, J. Reine Angew. Math.**490**(1997), 101-127. MR**1468927 (98j:13016)****[2]**M. Bhargava,*The factorial function and generalizations*, Am. Math. Monthly**107**(2000), 783-799. MR**1792411 (2002d:05002)****[3]**M. Bhargava,*On -orderings, rings of integer valued polynomials and ultrametric analysis*, Journal of the Amer. Math. Soc.**22(4)**(2009), 963-993. MR**2525777 (2010i:13022)****[4]**M. Bhargava, P.-J. Cahen, and J. Yermanian,*Finite generation properties for various rings of integer valued polynomials*, Journal of Algebra**322**(2009), 1129 -1150. MR**2537676****[5]**J. Boulanger and J.-L. Chabert,*Asymptotic behavior of characteristic sequences of integer-valued polynomials*, J. Number Theory**80**(2000), 238-259. MR**1740513 (2001g:13043)****[6]**P.-J. Cahen and J.-L. Chabert,*Integer Valued Polynomials*, Amer. Math. Soc., Providence, R.I., 1997. MR**1421321 (98a:13002)****[7]**F. Clarke,*Self maps of*, Math. Proc. Cam. Phil. Soc.**89**(1981), 491-500. MR**602302 (82f:55007)****[8]**K. Johnson,*-orderings of finite subsets of Dedekind domains*, J. Algebraic Combinatorics**30**(2009), 233-253. MR**2525060 (2010g:13030)****[9]**K. Johnson,*Limits of characteristic sequences of integer-valued polynomials on homogeneous sets*, J. Number Theory**129**(2009), 2933-2942. MR**2560844 (2010j:11048)****[10]**L.S. Osterdal,*Sub-additive functions and their (pseudo-) inverses*, J. Math. Anal. Appl.**317**(2006), 724 -731. MR**2209592 (2006k:26010)****[11]**A. Ostrowski,*Uber Ganzwertige Polynome in Algebraischen Zahlkorper*, J. Reine Angew. Math. (Crelle)**149**(1919), 117-124.**[12]**G. Polya,*Uber Ganzwertige Polynome in Algebraischen Zahlkorper*, J. Reine Angew. Math. (Crelle)**149**(1919), 97-116.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
13F20,
05A10,
11C08

Retrieve articles in all journals with MSC (2010): 13F20, 05A10, 11C08

Additional Information

**Keith Johnson**

Affiliation:
Department of Mathematics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada

Email:
johnson@mathstat.dal.ca

DOI:
https://doi.org/10.1090/S0002-9939-2011-10785-8

Received by editor(s):
May 21, 2010

Received by editor(s) in revised form:
August 30, 2010

Published electronically:
March 4, 2011

Communicated by:
Irena Peeva

Article copyright:
© Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.