Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Super-additive sequences and algebras of polynomials


Author: Keith Johnson
Journal: Proc. Amer. Math. Soc. 139 (2011), 3431-3443
MSC (2010): Primary 13F20; Secondary 05A10, 11C08
DOI: https://doi.org/10.1090/S0002-9939-2011-10785-8
Published electronically: March 4, 2011
MathSciNet review: 2813375
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ K$ is a field with discrete valuation $ \nu$ and $ D= \{ a \in K: \nu (a) \geq 0\}$, then an algebra $ D[x]\subseteq A\subseteq K[x]$ has associated to it a sequence of fractional ideals $ \{{\mathcal I}_n:n=0,1,2,\dots\}$ with $ {\mathcal I}_n$ consisting of 0 and the leading coefficients of elements of $ A$ of degree no more than $ n$ and a sequence of integers $ \{a(n):n=0,1,2,\dots\}$ with $ a(n)=-\nu({\mathcal I}_n)$. Combinatorial properties of this integer sequence reflect algebraic properties of $ A$, and these are used to identify the degrees of generators of $ A$ and to characterize finitely generated algebras $ A$ by a periodicity property of this sequence.


References [Enhancements On Off] (What's this?)

  • [1] M. Bhargava, $ P$-orderings and polynomial functions on arbitrary subsets of Dedekind rings, J. Reine Angew. Math. 490 (1997), 101-127. MR 1468927 (98j:13016)
  • [2] M. Bhargava, The factorial function and generalizations, Am. Math. Monthly 107 (2000), 783-799. MR 1792411 (2002d:05002)
  • [3] M. Bhargava, On $ P$-orderings, rings of integer valued polynomials and ultrametric analysis, Journal of the Amer. Math. Soc. 22(4) (2009), 963-993. MR 2525777 (2010i:13022)
  • [4] M. Bhargava, P.-J. Cahen, and J. Yermanian, Finite generation properties for various rings of integer valued polynomials, Journal of Algebra 322 (2009), 1129 -1150. MR 2537676
  • [5] J. Boulanger and J.-L. Chabert, Asymptotic behavior of characteristic sequences of integer-valued polynomials, J. Number Theory 80 (2000), 238-259. MR 1740513 (2001g:13043)
  • [6] P.-J. Cahen and J.-L. Chabert, Integer Valued Polynomials, Amer. Math. Soc., Providence, R.I., 1997. MR 1421321 (98a:13002)
  • [7] F. Clarke, Self maps of $ B\textrm{U}$, Math. Proc. Cam. Phil. Soc. 89 (1981), 491-500. MR 602302 (82f:55007)
  • [8] K. Johnson, $ P$-orderings of finite subsets of Dedekind domains, J. Algebraic Combinatorics 30 (2009), 233-253. MR 2525060 (2010g:13030)
  • [9] K. Johnson, Limits of characteristic sequences of integer-valued polynomials on homogeneous sets, J. Number Theory 129 (2009), 2933-2942. MR 2560844 (2010j:11048)
  • [10] L.S. Osterdal, Sub-additive functions and their (pseudo-) inverses, J. Math. Anal. Appl. 317 (2006), 724 -731. MR 2209592 (2006k:26010)
  • [11] A. Ostrowski, Uber Ganzwertige Polynome in Algebraischen Zahlkorper, J. Reine Angew. Math. (Crelle) 149 (1919), 117-124.
  • [12] G. Polya, Uber Ganzwertige Polynome in Algebraischen Zahlkorper, J. Reine Angew. Math. (Crelle) 149 (1919), 97-116.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 13F20, 05A10, 11C08

Retrieve articles in all journals with MSC (2010): 13F20, 05A10, 11C08


Additional Information

Keith Johnson
Affiliation: Department of Mathematics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
Email: johnson@mathstat.dal.ca

DOI: https://doi.org/10.1090/S0002-9939-2011-10785-8
Received by editor(s): May 21, 2010
Received by editor(s) in revised form: August 30, 2010
Published electronically: March 4, 2011
Communicated by: Irena Peeva
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society