Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Multiple solutions for nonlinear Neumann problems driven by a nonhomogeneous differential operator

Authors: D. Motreanu and N. S. Papageorgiou
Journal: Proc. Amer. Math. Soc. 139 (2011), 3527-3535
MSC (2010): Primary 35J40; Secondary 35J70
Published electronically: February 18, 2011
MathSciNet review: 2813384
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a nonlinear Neumann problem driven by a nonhomogeneous quasilinear degenerate elliptic differential operator $ \operatorname{div} a(x,\nabla u)$, a special case of which is the $ p$-Laplacian. The reaction term is a Carathéodory function $ f(x,s)$ which exhibits subcritical growth in $ s$. Using variational methods based on the mountain pass and second deformation theorems, together with truncation and minimization techniques, we show that the problem has three nontrivial smooth solutions, two of which have constant sign (one positive, the other negative). A crucial tool in our analysis is a result of independent interest which we prove here and which relates $ W^{1,p}$ and $ C^1$ local minimizers of a $ C^1$-functional constructed with the general differential operator $ \operatorname{div} a(x,\nabla u)$.

References [Enhancements On Off] (What's this?)

  • 1. S. Aizicovici, N. S. Papageorgiou and V. Staicu, The spectrum and an index formula for the Neumann $ p$-Laplacian and multiple solutions for problems with crossing nonlinearities, Discrete Cont. Dyn. Syst. 25 (2009), 431-456. MR 2525184 (2010h:35430)
  • 2. G. Bonanno and P. Candito, Three solutions to a Neumann problem for elliptic equations involving the $ p$-Laplacian. Arch. Math. (Basel) 80 (2003), 424-429. MR 1982841 (2004h:35061)
  • 3. H. Brezis and L. Nirenberg, $ H^1$ versus $ C^1$ local minimizers. C. R. Acad. Sci Paris 317 (1993), 465-472. MR 1239032 (94g:49044)
  • 4. S. Carl and K. Perera, Sign-changing and multiple solutions for the $ p$-Laplacian, Abstr. Appl. Anal. 7 (2002), 613-625. MR 1950611 (2004a:35061)
  • 5. Ph. Clément, M. Garcia-Huidobro, R. Manasevich, and K. Schmitt, Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. Partial Diff. Equ. 11 (2000), 33-62. MR 1777463 (2001h:35051)
  • 6. L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998), 493-516. MR 1632933 (99e:35081)
  • 7. F. Faraci, Multiple solutions for two nonlinear problems involving the $ p$-Laplacian, Nonlinear Anal. 63 (2005), e1017-e1029 (electronic).
  • 8. J. Garcia Azorero, I. Peral Alonso, and J. Manfredi, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math. 2 (2000), 385-404. MR 1776988 (2001k:35062)
  • 9. M. Garcia-Huidobro, R. Manasevich, and P. Ubilla, Existence of positive solutions for some Dirichlet problems with an asymptotically linear operator, Electron. J. Differential Equations 1995, No. 10 (electronic). MR 1345249 (96f:35053)
  • 10. L. Gasiński and N. S. Papageorgiou, Nonlinear Analysis, Chapman & Hall/CRC, Boca Raton, FL, 2006. MR 2168068 (2006e:47001)
  • 11. G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203-1219. MR 969499 (90a:35098)
  • 12. S. Liu, Multiple solutions for coercive $ p$-Laplacian equations, J. Math. Anal. Appl. 316 (2006), 229-236. MR 2201759 (2006m:35103)
  • 13. J. Liu and S. Liu, The existence of multiple solutions to quasilinear elliptic equations, Bull. London Math. Soc. 37 (2005), 592-600. MR 2143739 (2006m:35102)
  • 14. M. Montenegro, Strong maximum principles for supersolutions of quasilinear elliptic equations, Nonlinear Anal. 37 (1999), 431-448. MR 1691019 (2000i:35048)
  • 15. D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, A degree theoretic approach for multiple solutions of constant sign for nonlinear elliptic equations, Manuscripta Math. 124 (2007), 507-531. MR 2357796 (2009f:35100)
  • 16. D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Multiple nontrivial solutions for nonlinear eigenvalue problems, Proc. Amer. Math. Soc. 135 (2007), 3649-3658. MR 2336581 (2008m:35259)
  • 17. D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, A unified approach for multiple constant sign and nodal solutions, Adv. Differential Equations 12 (2007), 1363-1392. MR 2382729 (2009b:35142)
  • 18. D. Motreanu, V. V. Motreanu and N. S. Papageorgiou, Nonlinear Neumann problems near resonance, Indiana Univ. Math. J. 58 (2009), 1257-1279. MR 2541367 (2010e:35101)
  • 19. D. Motreanu and N. S. Papageorgiou, Existence and multiplicity of solutions for Neumann problems, J. Differential Equations 232 (2007), 1-35. MR 2281188 (2007h:35046)
  • 20. E. Papageorgiou and N. S. Papageorgiou, A multiplicity theorem for problems with the $ p$-Laplacian, J. Functional Anal. 244 (2007), 63-77. MR 2294475 (2008e:35074)
  • 21. X. Wu and K. K. Tan, On existence and multiplicity of solutions of Neumann boundary value problems for quasi-linear elliptic equations, Nonlinear Anal. 65 (2006), 1334-1347. MR 2245508 (2007d:35111)
  • 22. Q. Zhang, A strong maximum principle for differential equations with nonstandard $ p(x)$-growth conditions, J. Math. Anal. Appl. 312 (2005), 24-32. MR 2175201 (2006e:35132)
  • 23. Z. Zhang, J. Chen and S. Li, Construction of a pseudo-gradient vector field and sign-changing multiple solutions involving the $ p$-Laplacian, J. Differential Equations 201 (2004), 287-303. MR 2059609 (2006d:35047)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35J40, 35J70

Retrieve articles in all journals with MSC (2010): 35J40, 35J70

Additional Information

D. Motreanu
Affiliation: Département de Mathématiques, Université de Perpignan, 66860 Perpignan, France

N. S. Papageorgiou
Affiliation: Department of Mathematics, National Technical University, Athens 15780, Greece

Keywords: Nonlinear Neumann problem, $p$-Laplacian, local minimizers, mountain pass theorem, second deformation theorem, nonlinear regularity theory
Received by editor(s): March 17, 2010
Received by editor(s) in revised form: July 23, 2010, and August 24, 2010
Published electronically: February 18, 2011
Communicated by: Walter Craig
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society