Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Distribution of point charges with small discrete energy


Author: Igor E. Pritsker
Journal: Proc. Amer. Math. Soc. 139 (2011), 3461-3473
MSC (2010): Primary 31C20; Secondary 31C15
DOI: https://doi.org/10.1090/S0002-9939-2011-11135-3
Published electronically: May 18, 2011
MathSciNet review: 2813378
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the asymptotic equidistribution of points near arbitrary compact sets of positive capacity in $ \mathbb{R}^d, d\ge 2$. Our main tools are the energy estimates for Riesz potentials. We also consider the quantitative aspects of this equidistribution in the classical Newtonian case. In particular, we quantify the weak convergence of discrete measures to the equilibrium measure and give the estimates of convergence rates for discrete potentials to the equilibrium potential.


References [Enhancements On Off] (What's this?)

  • 1. H. Aikawa and M. Essén, Potential Theory-Selected Topics, Lecture Notes in Math. 1633, Springer-Verlag, Berlin, 1996. MR 1439503 (98f:31005)
  • 2. V. V. Andrievskii and H.-P. Blatt, Discrepancy of Signed Measures and Polynomial Approximation, Springer-Verlag, New York, 2002. MR 1871219 (2002k:30001)
  • 3. D. H. Armitage and S. J. Gardiner, Classical Potential Theory, Springer-Verlag, New York, 2001. MR 1801253 (2001m:31001)
  • 4. L. Carleson, Selected Problems on Exceptional Sets, Van Nostrand Co., Princeton, 1967. MR 0225986 (37:1576)
  • 5. L. Carleson and V. Totik, Hölder continuity of Green's functions, Acta Sci. Math. 70 (2004), 557-608. MR 2107529 (2005h:30052)
  • 6. M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Zeit. 17 (1923), 228-249. MR 1544613
  • 7. M. Götz, A discrepancy theorem in $ \mathbb{R}^d,\ d\ge 3$, Analysis 20 (2000), 303-323. MR 1809510 (2001m:31012)
  • 8. M. Götz, On the distribution of weighted extremal points on a surface in $ \mathbb{R}^d, d\ge 3$, Potential Anal. 13 (2000), 345-359. MR 1804177 (2002a:31006)
  • 9. M. Götz, On the distribution of Leja-Górski points, J. Comput. Anal. Appl. 3 (2001), 223-241. MR 1840565 (2002f:31016)
  • 10. D. P. Hardin and E. B. Saff, Discretizing manifolds via minimum energy points, Notices Amer. Math. Soc. 51 (2004), 1186-1194. MR 2104914 (2006a:41049)
  • 11. J. Huesing, Estimates for the discrepancy of a signed measure using its energy norm, J. Approx. Theory 109 (2001), 1-29. MR 1818068 (2002g:31001)
  • 12. O. D. Kellogg, Foundations of Potential Theory, Dover, New York, 1954.
  • 13. W. Kleiner, Une condition de Dini-Lipschitz dans la théorie du potentiel, Ann. Polon. Math. 14 (1964), 117-130. MR 0160922 (28:4131)
  • 14. J. Korevaar, Fekete extreme points and related problems, in ``Approximation theory and function series'' (Budapest, 1995), 35-62, Bolyai Soc. Math. Stud., 5, János Bolyai Math. Soc., Budapest, 1996. MR 1432660 (98c:31004)
  • 15. J. Korevaar and M. A. Monterie, Fekete potentials and polynomials for continua, J. Approx. Theory 109 (2001), 110-125. MR 1818072 (2002c:41006)
  • 16. N. S. Landkof, Foundations of Modern Potential Theory, Springer-Verlag, New York-Heidelberg, 1972. MR 0350027 (50:2520)
  • 17. V. G. Maz$ '$ja, Regularity at the boundary of solutions of elliptic equations, and conformal mappings, Dokl. Akad. Nauk SSSR, 152 (1963), 1297-1300 (in Russian). MR 0163053 (29:356)
  • 18. V. G. Maz$ '$ja, On the modulus of continuity of a harmonic function at a boundary point, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 135 (1984), 87-95 (in Russian). MR 741698 (85i:31005)
  • 19. I. E. Pritsker, Equidistribution of points via energy, Ark. Mat. 49 (2011), 149-173.
  • 20. E. B. Saff and A. B. J. Kuijlaars, Distributing many points on a sphere, Math. Intelligencer 19 (1997), 5-11. MR 1439152 (98h:70011)
  • 21. P. Sjögren, Estimates of mass distributions from their potentials and energies, Ark. Mat. 10 (1972), 59-77. MR 0310268 (46:9369)
  • 22. P. Sjögren, On the regularity of the distribution of the Fekete points of a compact surface in $ \mathbb{R}^n$, Ark. Mat. 11 (1973), 147-151. MR 0340629 (49:5381)
  • 23. G. Szegő, Bemerkungen zu einer Arbeit von Herrn M. Fekete: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Zeit. 21 (1924), 203-208. MR 1544698
  • 24. F. Toókos, A Wiener-type condition for Hölder continuity for Green's functions, Acta Math. Hungar. 111 (2006), 131-155. MR 2188977 (2007m:31010)
  • 25. V. Totik, Metric Properties of Harmonic Measures, Mem. Amer. Math. Soc. 184 (2006), no. 867. MR 2263357 (2007m:31003)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 31C20, 31C15

Retrieve articles in all journals with MSC (2010): 31C20, 31C15


Additional Information

Igor E. Pritsker
Affiliation: Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078
Email: igor@math.okstate.edu

DOI: https://doi.org/10.1090/S0002-9939-2011-11135-3
Keywords: Riesz potentials, Newton potentials, equilibrium measure, discrete energy, Fekete points, minimum energy, discrepancy.
Received by editor(s): January 8, 2010
Published electronically: May 18, 2011
Additional Notes: The author’s research was partially supported by the National Security Agency and by the Alexander von Humboldt Foundation.
Communicated by: Mario Bonk
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society