Growth and isoperimetric profile of planar graphs

Authors:
Itai Benjamini and Panos Papasoglu

Journal:
Proc. Amer. Math. Soc. **139** (2011), 4105-4111

MSC (2010):
Primary 53C20, 53C23, 05C10

DOI:
https://doi.org/10.1090/S0002-9939-2011-10810-4

Published electronically:
March 17, 2011

MathSciNet review:
2823055

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a planar graph such that the volume function of satisfies for some constant . Then for every vertex of and , there is a domain such that , and .

**1.**J. Ambjørn, B. Durhuus and T. Jonsson, Quantum geometry. A statistical field theory approach. Cambridge University Press, Cambridge (1997). MR**1465433 (98i:82001)****2.**O. Angel, Growth and percolation on the uniform infinite planar triangulation,*Geometric and Functional Analysis***13**, 935-974 (2003). MR**2024412 (2005b:60015)****3.**O. Angel and O. Schramm, Uniform infinite planar triangulations,*Comm. Math. Phys.***241**, 191-213 (2003). MR**2013797 (2005b:60021)****4.**I. Benjamini and N. Curien, On limits of graphs sphere packed in Euclidean space and applications, European J. Combinatorics, to appear (2010). http://arxiv.org/abs/0907.2609**5.**I. Benjamini and O. Schramm, Recurrence of distributional limits of finite planar graphs,*Electron. J. Probab.***6**, 13 pp. (2001). MR**1873300 (2002m:82025)****6.**B. Bowditch, A short proof that a subquadratic isoperimetric inequality implies a linear one,*Michigan Math. J.***42**(1991) no. 1, pp. 103-107. MR**1322192 (96b:20046)****7.**N. Curien, L. Menard and G. Miermont, The uniform infinite planar quadrangulation seen from infinity. In preparation.**8.**W. Fulton, Algebraic Topology, Springer, 1995. MR**1343250 (97b:55001)****9.**A. Grigor'yan, Heat Kernel and Analysis on Manifolds. American Mathematical Society (2009). MR**2569498****10.**M. Krikun, Uniform infinite planar triangulation and related time-reversed critical branching process, arXiv:math/0311127**11.**M. Krikun, Local structure of random quadrangulations, arXiv:math/0512304**12.**P. Papasoglu,*Cheeger constants of surfaces and isoperimetric inequalities*, Trans. Amer. Math. Soc.**361**(2009), 5139-5162. MR**2515806**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
53C20,
53C23,
05C10

Retrieve articles in all journals with MSC (2010): 53C20, 53C23, 05C10

Additional Information

**Itai Benjamini**

Affiliation:
Department of Mathematics, Weizmann Institute, Rehovot, 76100, Israel

Email:
itai.benjamini@weizmann.ac.il

**Panos Papasoglu**

Affiliation:
Mathematical Institute, University of Oxford, 24-29 St Giles’, Oxford, OX1 3LB, United Kingdom

Email:
papazoglou@maths.ox.ac.uk

DOI:
https://doi.org/10.1090/S0002-9939-2011-10810-4

Received by editor(s):
April 24, 2010

Received by editor(s) in revised form:
September 24, 2010

Published electronically:
March 17, 2011

Communicated by:
Jianguo Cao

Article copyright:
© Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.