Growth and isoperimetric profile of planar graphs

Authors:
Itai Benjamini and Panos Papasoglu

Journal:
Proc. Amer. Math. Soc. **139** (2011), 4105-4111

MSC (2010):
Primary 53C20, 53C23, 05C10

Published electronically:
March 17, 2011

MathSciNet review:
2823055

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a planar graph such that the volume function of satisfies for some constant . Then for every vertex of and , there is a domain such that , and .

**1.**Jan Ambjørn, Bergfinnur Durhuus, and Thordur Jonsson,*Quantum geometry*, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1997. A statistical field theory approach. MR**1465433****2.**O. Angel,*Growth and percolation on the uniform infinite planar triangulation*, Geom. Funct. Anal.**13**(2003), no. 5, 935–974. MR**2024412**, 10.1007/s00039-003-0436-5**3.**Omer Angel and Oded Schramm,*Uniform infinite planar triangulations*, Comm. Math. Phys.**241**(2003), no. 2-3, 191–213. MR**2013797**, 10.1007/978-1-4419-9675-6_16**4.**I. Benjamini and N. Curien, On limits of graphs sphere packed in Euclidean space and applications, European J. Combinatorics, to appear (2010). http://arxiv.org/abs/0907.2609**5.**Itai Benjamini and Oded Schramm,*Recurrence of distributional limits of finite planar graphs*, Electron. J. Probab.**6**(2001), no. 23, 13 pp. (electronic). MR**1873300**, 10.1214/EJP.v6-96**6.**B. H. Bowditch,*A short proof that a subquadratic isoperimetric inequality implies a linear one*, Michigan Math. J.**42**(1995), no. 1, 103–107. MR**1322192**, 10.1307/mmj/1029005156**7.**N. Curien, L. Menard and G. Miermont, The uniform infinite planar quadrangulation seen from infinity. In preparation.**8.**William Fulton,*Algebraic topology*, Graduate Texts in Mathematics, vol. 153, Springer-Verlag, New York, 1995. A first course. MR**1343250****9.**Alexander Grigor’yan,*Heat kernel and analysis on manifolds*, AMS/IP Studies in Advanced Mathematics, vol. 47, American Mathematical Society, Providence, RI; International Press, Boston, MA, 2009. MR**2569498****10.**M. Krikun, Uniform infinite planar triangulation and related time-reversed critical branching process, arXiv:math/0311127**11.**M. Krikun, Local structure of random quadrangulations, arXiv:math/0512304**12.**Panos Papasoglu,*Cheeger constants of surfaces and isoperimetric inequalities*, Trans. Amer. Math. Soc.**361**(2009), no. 10, 5139–5162. MR**2515806**, 10.1090/S0002-9947-09-04815-6

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
53C20,
53C23,
05C10

Retrieve articles in all journals with MSC (2010): 53C20, 53C23, 05C10

Additional Information

**Itai Benjamini**

Affiliation:
Department of Mathematics, Weizmann Institute, Rehovot, 76100, Israel

Email:
itai.benjamini@weizmann.ac.il

**Panos Papasoglu**

Affiliation:
Mathematical Institute, University of Oxford, 24-29 St Giles’, Oxford, OX1 3LB, United Kingdom

Email:
papazoglou@maths.ox.ac.uk

DOI:
http://dx.doi.org/10.1090/S0002-9939-2011-10810-4

Received by editor(s):
April 24, 2010

Received by editor(s) in revised form:
September 24, 2010

Published electronically:
March 17, 2011

Communicated by:
Jianguo Cao

Article copyright:
© Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.