Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Holomorphic automorphisms of Danielewski surfaces I --- density of the group of overshears


Authors: Frank Kutzschebauch and Andreas Lind
Journal: Proc. Amer. Math. Soc. 139 (2011), 3915-3927
MSC (2010): Primary 32Q28; Secondary 32M17
DOI: https://doi.org/10.1090/S0002-9939-2011-10855-4
Published electronically: March 10, 2011
MathSciNet review: 2823038
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We define the notion of shears and overshears on a Danielewski surface. We show that the group generated by shears and overshears is dense (in the compact open topology) in the path-connected component of the identity of the holomorphic automorphism group.


References [Enhancements On Off] (What's this?)

  • 1. R. Abraham, J. E. Marsden, Foundations of mechanics. Second edition, revised and enlarged, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. MR 515141 (81e:58025)
  • 2. P. Ahern, W. Rudin, Periodic automorphisms of $ \mathbb{C}^n$, Indiana Univ. Math. J. 44 (1995), no. 1, 287-303. MR 1336443 (96f:32038)
  • 3. E. Andersén, Volume-preserving automorphisms of $ \mathbb{C}^n$, Complex Variables Theory Appl. 14 (1990), no. 1-4, 223-235. MR 1048723 (91d:32047)
  • 4. E. Andersén, L. Lempert, On the group of holomorphic automorphisms of $ \mathbb{C}^n$, Invent. Math. 110 (1992), no. 2, 371-388. MR 1185588 (93i:32038)
  • 5. I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg, The automorphism group of a flexible affine variety is infinitely transitive (2010), arXiv:1011.5375.
  • 6. W. Danielewski, On a cancellation problem and automorphism groups of affine algebraic varieties, preprint, Warsaw (1989).
  • 7. F. Docquier, H. Grauert, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann. 140 (1960), 94-123. MR 0148939 (26:6435)
  • 8. K. H. Fieseler, On complex affine surfaces with $ \mathbb{C}\sp+$-action, Comment. Math. Helv. 69 (1994), no. 1, 5-27. MR 1259603 (95b:14027)
  • 9. F. Forstnerič, J. P. Rosay, Approximations of biholomorphic mappings by automorphisms of $ \mathbb{C}^n$, Invent. Math. 112 (1993), no. 2, 323-349. MR 1213106 (94f:32032)
  • 10. H. W. E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161-174. MR 0008915 (5:74f)
  • 11. S. Kaliman, F. Kutzschebauch, Density property for hypersurfaces $ UV=P(\overline{X})$, Math. Z. 258 (2008), no. 1, 115-131. MR 2350038 (2008k:32062)
  • 12. S. Kaliman, F. Kutzschebauch, Criteria for the density property of complex manifolds, Invent. Math. 172 (2008), no. 1, 71-87. MR 2385667 (2008k:32066)
  • 13. S. Kaliman, F. Kutzschebauch, On the present state of the Andersén-Lempert theory, arXiv:1003.3434.
  • 14. S. Kaliman, F. Kutzschebauch, Algebraic volume density property for affine algebraic manifolds, Invent. Math. 181 (2010), no. 1, 605-647. MR 2660454
  • 15. F. Kutzschebauch, H. P. Kraft, Equivariant affine line bundles and linearization, Math. Res. Lett. 3 (1996), no. 5, 619-627. MR 1418576 (97h:14065)
  • 16. L. Makar-Limanov, On groups of automorphisms of a class of surfaces, Israel J. Math. 69 (1990), no. 2, 250-256. MR 1045377 (91b:14059)
  • 17. L. Makar-Limanov, On the group of automorphisms of a surface $ x\sp ny=P(z)$, Israel J. Math. 121 (2001), 113-123. MR 1818396 (2001m:14086)
  • 18. J. P. Rosay, W. Rudin, Holomorphic maps from $ C\sp n$ to $ C\sp n$, Trans. Amer. Math. Soc. 310 (1988), no. 1, 47-86. MR 929658 (89d:32058)
  • 19. W. Van der Kulk, On polynomial rings in two variables, Nieuw Arch. Wiskunde (3) 1 (1953), 33-41. MR 0054574 (14:941f)
  • 20. D. Varolin, A general notion of shears, and applications, Michigan Math. J. 46 (1999), no. 3, 533-553. MR 1721579 (2001a:32032)
  • 21. D. Varolin, The density property for complex manifolds and geometric structures, J. Geom. Anal. 11 (2001), no. 1, 135-160. MR 1829353 (2002g:32026)
  • 22. D. Varolin, The density property for complex manifolds and geometric structures. II, Internat. J. Math. 11 (2000), no. 6, 837-847. MR 1785520 (2002g:32027)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 32Q28, 32M17

Retrieve articles in all journals with MSC (2010): 32Q28, 32M17


Additional Information

Frank Kutzschebauch
Affiliation: Institute of Mathematics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
Email: Frank.Kutzschebauch@math.unibe.ch

Andreas Lind
Affiliation: Department of Mathematics, Mid Sweden University, SE-851 70 Sundsvall, Sweden
Email: Andreas.Lind@miun.se

DOI: https://doi.org/10.1090/S0002-9939-2011-10855-4
Keywords: Danielewski surfaces, holomorphic automorphisms, overshears
Received by editor(s): April 22, 2010
Received by editor(s) in revised form: April 29, 2010, and September 6, 2010
Published electronically: March 10, 2011
Communicated by: Franc Forstnerič
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society