Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Analytical solutions to the Navier-Stokes-Poisson equations with density-dependent viscosity and with pressure


Authors: Ling Hei Yeung and Manwai Yuen
Journal: Proc. Amer. Math. Soc. 139 (2011), 3951-3960
MSC (2010): Primary 35B44, 35Q30, 35Q35, 85A15
DOI: https://doi.org/10.1090/S0002-9939-2011-11048-7
Published electronically: April 19, 2011
MathSciNet review: 2823041
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study some particular solutions to the Navier-Stokes-Poisson equations with density-dependent viscosity and with pressure, in radial symmetry. With an extension of the previous known blow-up solutions for the Euler-Poisson equations with pressureless Navier-Stokes-Poisson density-dependent viscosity, we constructed the corresponding self-similar blow-up solutions for the Navier-Stokes-Poisson equations with density-dependent viscosity and with pressure. Our solutions can provide concrete examples for testing the validation and stabilities of numerical methods for the systems.


References [Enhancements On Off] (What's this?)

  • 1. M. Bézard, Existence locale de solutions pour les équations d'Euler-Poisson (French) [Local Existence of Solutions for Euler-Poisson Equations], Japan J. Indust. Appl. Math. 10 (1993), 431-450. MR 1247876 (94i:35158)
  • 2. J. Binney and S. Tremaine, Galactic Dynamics, Princeton Univ. Press, 1994.
  • 3. S. Chandrasekhar, An Introduction to the Study of Stellar Structure, Univ. of Chicago Press, 1939.
  • 4. G.Q. Chen and D.H. Wang, The Cauchy Problem for the Euler Equations for Compressible Fluids, Handbook of Mathematical Fluid Dynamics, Vol. I, 421-543, North-Holland, Amsterdam, 2002. MR 1942468 (2004e:35182)
  • 5. C. F. Chen, Introduction to Plasma Physics and Controlled Fusion, Plenum, New York, 1984.
  • 6. P.L. Lions, Mathematical Topics in Fluid Mechanics, Vols. 1, 2, Oxford: Clarendon Press, 1998. MR 1422251 (98b:76001); MR 1637634 (99m:76001)
  • 7. Y.B. Deng, J.L. Xiang and T. Yang, Blowup phenomena of solutions to Euler-Poisson equations, J. Math. Anal. Appl. 286 (2003), 295-306. MR 2009638 (2005c:35239)
  • 8. H. H. Fliche and R. Triay, Euler-Poisson-Newton Approach in Cosmology, Cosmology and Gravitation, 346-360, AIP Conf. Proc., 910, Amer. Inst. Phys., Melville, NY, 2007. MR 2397121 (2009d:83178)
  • 9. P. Gamblin, Solution régulière à temps petit pour l'équation d'Euler-Poisson (French) [Small-time Regular Solution for the Euler-Poisson Equation], Comm. Partial Differential Equations 18 (1993), 731-745. MR 1218516 (94f:35115)
  • 10. R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. MR 1379589 (97i:82070)
  • 11. P. Goldreich and S. Weber, Homologously collapsing stellar cores, Astrophys. J. 238 (1980), 991-997.
  • 12. R. Kippenhahn and A. Weigert, Stellar Structure and Evolution, Springer-Verlag, 1990.
  • 13. L.D. Landau and E.M. Lifshitz, Fluid mechanics, Translated from the Russian by J. B. Sykes and W. H. Reid. Course of Theoretical Physics. Vol. 6. London: Pergamon Press, 1959. MR 961259 (89i:00006)
  • 14. T. Makino, On a Local Existence Theorem for the Evolution Equation of Gaseous Stars, Patterns and waves, 459-479, Stud. Math. Appl. 18, North-Holland, Amsterdam, 1986. MR 882389 (88f:85004)
  • 15. T. Makino, Blowing up solutions of the Euler-Poission equation for the evolution of the gaseous stars, Transport Theory and Statistical Physics 21 (1992), 615-624. MR 1194464 (93i:85004)
  • 16. T. Nishida, Equations of fluid dynamics-Free surface problems, Comm. Pure Appl. Math. XXXIX (1986), 221-238. MR 861489 (88b:35214)
  • 17. R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, Vol. 2. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. MR 0609732 (58:29439)
  • 18. T. Yang, Z.A. Yao and C. J. Zhu, Compressible Navier-Stokes equations with density-dependent viscosity and vacuum, Comm. Partial Differential Equations 26 (2001), 965-981. MR 1843291 (2002f:76069)
  • 19. L.H. Yeung and M.W. Yuen, Analytical solutions to the Navier-Stokes equations with density-dependent viscosity and with pressure, J. Math. Phys. 50 (2009), no. 8, 083101, 6 pp. MR 2554422 (2010h:76049)
  • 20. M.W. Yuen, Blowup solutions for a class of fluid dynamical equations in $ R^{N}$, J. Math. Anal. Appl. 329 (2007), 1064-1079. MR 2296906 (2008m:35271)
  • 21. M.W. Yuen, Analytical blowup solutions to the $ 2$-dimensional isothermal Euler-Poisson equations of gaseous stars, J. Math. Anal. Appl. 341 (2008), 445-456. MR 2394097 (2008m:85004)
  • 22. M.W. Yuen, Analytical solutions to the Navier-Stokes equations, J. Math. Phys. 49 (2008), 113102. MR 2468532 (2010d:35267)
  • 23. M.W. Yuen, Analytical blowup solutions to the pressureless Navier-Stokes-Poisson equations with density-dependent viscosity in $ R^{N}$, Nonlinearity 22 (2009), 2261-2268. MR 2534302 (2010h:35323)
  • 24. M.W. Yuen, Analytically periodic solutions to the three-dimensional Euler-Poisson equations of gaseous stars with a negative cosmological constant, Class. Quantum Grav. 26 (2009), 235011. MR 2559237 (2010k:85002)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35B44, 35Q30, 35Q35, 85A15

Retrieve articles in all journals with MSC (2010): 35B44, 35Q30, 35Q35, 85A15


Additional Information

Ling Hei Yeung
Email: lightisgood2005@yahoo.com.hk

Manwai Yuen
Affiliation: Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
Email: nevetsyuen@hotmail.com

DOI: https://doi.org/10.1090/S0002-9939-2011-11048-7
Keywords: Fluids, Navier-Stokes-Poisson equations, density-dependent viscosity, with pressure, blowup, free boundary, self-similar solutions, global solutions, gaseous stars, semi-conductor models
Received by editor(s): September 9, 2010
Published electronically: April 19, 2011
Communicated by: Walter Craig
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society