Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 

 

Analytical solutions to the Navier-Stokes-Poisson equations with density-dependent viscosity and with pressure


Authors: Ling Hei Yeung and Manwai Yuen
Journal: Proc. Amer. Math. Soc. 139 (2011), 3951-3960
MSC (2010): Primary 35B44, 35Q30, 35Q35, 85A15
Published electronically: April 19, 2011
MathSciNet review: 2823041
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study some particular solutions to the Navier-Stokes-Poisson equations with density-dependent viscosity and with pressure, in radial symmetry. With an extension of the previous known blow-up solutions for the Euler-Poisson equations with pressureless Navier-Stokes-Poisson density-dependent viscosity, we constructed the corresponding self-similar blow-up solutions for the Navier-Stokes-Poisson equations with density-dependent viscosity and with pressure. Our solutions can provide concrete examples for testing the validation and stabilities of numerical methods for the systems.


References [Enhancements On Off] (What's this?)

  • 1. Max Bézard, Existence locale de solutions pour les équations d’Euler-Poisson, Japan J. Indust. Appl. Math. 10 (1993), no. 3, 431–450 (French, with English summary). MR 1247876, 10.1007/BF03167283
  • 2. J. Binney and S. Tremaine, Galactic Dynamics, Princeton Univ. Press, 1994.
  • 3. S. Chandrasekhar, An Introduction to the Study of Stellar Structure, Univ. of Chicago Press, 1939.
  • 4. Gui-Qiang Chen and Dehua Wang, The Cauchy problem for the Euler equations for compressible fluids, Handbook of mathematical fluid dynamics, Vol. I, North-Holland, Amsterdam, 2002, pp. 421–543. MR 1942468, 10.1016/S1874-5792(02)80012-X
  • 5. C. F. Chen, Introduction to Plasma Physics and Controlled Fusion, Plenum, New York, 1984.
  • 6. Pierre-Louis Lions, Mathematical topics in fluid mechanics. Vol. 1, Oxford Lecture Series in Mathematics and its Applications, vol. 3, The Clarendon Press, Oxford University Press, New York, 1996. Incompressible models; Oxford Science Publications. MR 1422251
    Pierre-Louis Lions, Mathematical topics in fluid mechanics. Vol. 2, Oxford Lecture Series in Mathematics and its Applications, vol. 10, The Clarendon Press, Oxford University Press, New York, 1998. Compressible models; Oxford Science Publications. MR 1637634
  • 7. Yinbin Deng, Jianlin Xiang, and Tong Yang, Blowup phenomena of solutions to Euler-Poisson equations, J. Math. Anal. Appl. 286 (2003), no. 1, 295–306. MR 2009638, 10.1016/S0022-247X(03)00487-6
  • 8. R. Triay and H. H. Fliche, Euler-Poisson-Newton approach in cosmology, Cosmology and gravitation, AIP Conf. Proc., vol. 910, Amer. Inst. Phys., Melville, NY, 2007, pp. 346–360. MR 2397121, 10.1063/1.2752485
  • 9. Pascal Gamblin, Solution régulière à temps petit pour l’équation d’Euler-Poisson, Comm. Partial Differential Equations 18 (1993), no. 5-6, 731–745 (French, with English summary). MR 1218516, 10.1080/03605309308820948
  • 10. Robert T. Glassey, The Cauchy problem in kinetic theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. MR 1379589
  • 11. P. Goldreich and S. Weber, Homologously collapsing stellar cores, Astrophys. J. 238 (1980), 991-997.
  • 12. R. Kippenhahn and A. Weigert, Stellar Structure and Evolution, Springer-Verlag, 1990.
  • 13. L. D. Landau and E. M. Lifshitz, Course of theoretical physics. Vol. 6, 2nd ed., Pergamon Press, Oxford, 1987. Fluid mechanics; Translated from the third Russian edition by J. B. Sykes and W. H. Reid. MR 961259
  • 14. Tetu Makino, On a local existence theorem for the evolution equation of gaseous stars, Patterns and waves, Stud. Math. Appl., vol. 18, North-Holland, Amsterdam, 1986, pp. 459–479. MR 882389, 10.1016/S0168-2024(08)70142-5
  • 15. Tetu Makino, Blowing up solutions of the Euler-Poisson equation for the evolution of gaseous stars, Proceedings of the Fourth International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics (Kyoto, 1991), 1992, pp. 615–624. MR 1194464, 10.1080/00411459208203801
  • 16. Takaaki Nishida, Equations of fluid dynamics—free surface problems, Comm. Pure Appl. Math. 39 (1986), no. S, suppl., S221–S238. Frontiers of the mathematical sciences: 1985 (New York, 1985). MR 861489, 10.1002/cpa.3160390712
  • 17. Roger Temam, Navier-Stokes equations. Theory and numerical analysis, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Studies in Mathematics and its Applications, Vol. 2. MR 0609732
  • 18. Tong Yang, Zheng-an Yao, and Changjiang Zhu, Compressible Navier-Stokes equations with density-dependent viscosity and vacuum, Comm. Partial Differential Equations 26 (2001), no. 5-6, 965–981. MR 1843291, 10.1081/PDE-100002385
  • 19. Ling Hei Yeung and Yuen Manwai, Analytical solutions to the Navier-Stokes equations with density-dependent viscosity and with pressure, J. Math. Phys. 50 (2009), no. 8, 083101, 6. MR 2554422, 10.1063/1.3197860
  • 20. Manwai Yuen, Blowup solutions for a class of fluid dynamical equations in 𝐑^{𝐍}, J. Math. Anal. Appl. 329 (2007), no. 2, 1064–1079. MR 2296906, 10.1016/j.jmaa.2006.07.032
  • 21. Manwai Yuen, Analytical blowup solutions to the 2-dimensional isothermal Euler-Poisson equations of gaseous stars, J. Math. Anal. Appl. 341 (2008), no. 1, 445–456. MR 2394097, 10.1016/j.jmaa.2007.10.026
  • 22. Manwai Yuen, Analytical solutions to the Navier-Stokes equations, J. Math. Phys. 49 (2008), no. 11, 113102, 10. MR 2468532, 10.1063/1.3013805
  • 23. Manwai Yuen, Analytical blowup solutions to the pressureless Navier-Stokes-Poisson equations with density-dependent viscosity in 𝐑^{𝐍}, Nonlinearity 22 (2009), no. 9, 2261–2268. MR 2534302, 10.1088/0951-7715/22/9/010
  • 24. Manwai Yuen, Analytically periodic solutions to the three-dimensional Euler-Poisson equations of gaseous stars with a negative cosmological constant, Classical Quantum Gravity 26 (2009), no. 23, 235011, 8. MR 2559237, 10.1088/0264-9381/26/23/235011

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35B44, 35Q30, 35Q35, 85A15

Retrieve articles in all journals with MSC (2010): 35B44, 35Q30, 35Q35, 85A15


Additional Information

Ling Hei Yeung
Email: lightisgood2005@yahoo.com.hk

Manwai Yuen
Affiliation: Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
Email: nevetsyuen@hotmail.com

DOI: http://dx.doi.org/10.1090/S0002-9939-2011-11048-7
Keywords: Fluids, Navier-Stokes-Poisson equations, density-dependent viscosity, with pressure, blowup, free boundary, self-similar solutions, global solutions, gaseous stars, semi-conductor models
Received by editor(s): September 9, 2010
Published electronically: April 19, 2011
Communicated by: Walter Craig
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.