VARIOUS CHARACTERIZATIONS OF PRODUCT HARDY SPACE

JI LI, LIANG SONG, AND CHAOQIANG TAN

(Communicated by Michael T. Lacey)

Abstract. This article deals with the characterizations of Hardy space H^1 on $\mathbb{R}^n \times \mathbb{R}^m$ using different norms on distinct variables. This result can be applied to the boundedness of certain operators on $H^1(\mathbb{R}^n \times \mathbb{R}^m)$.

1. Introduction

The product Hardy space theory was developed by R. Gundy and E.M. Stein [7], S.-Y. Chang and R. Fefferman [1, 2, 4, 5], as well as J. Journé [11, 12]. See [13, 15, 16] for some recent progress on multiparameter theory. As we all know, the space $H^1(\mathbb{R}^n \times \mathbb{R}^m)$ has a variety of different norms, in terms of maximal functions, square functions and Riesz transforms (see Theorem 3.4 of [13]).

Theorem A (Equivalent forms of H^1 norm). All the norms below are equivalent and can be used as a definition of $H^1(\mathbb{R}^n \times \mathbb{R}^m)$:

$$
\|f^+\|_{L^1} \simeq \|f^*\|_{L^1} \simeq \|f\|_{L^1} + \|S(f)\|_{L^1} \simeq \sum_{i=0}^n \sum_{j=0}^m \|R_{1,i}R_{2,j}f\|_{L^1},
$$

where $S(f)$ is the Littlewood–Paley square function and we use f^+ and f^* to denote the vertical and nontangential maximal function, respectively, $R_{1,i}$ to denote the ith Riesz transform for the first variable $x_1 \in \mathbb{R}^n$ and $R_{2,j}$ the jth Riesz transform for the second variable $x_2 \in \mathbb{R}^m$, and the 0th is the identity operator.

Moreover, $H^1(\mathbb{R}^n \times \mathbb{R}^m)$ adapts an atomic decomposition as follows. See Section 2 for the denotation.

Definition B. An $L^2(\mathbb{R}^n \times \mathbb{R}^m)$ function a is called an $H^1(\mathbb{R}^n \times \mathbb{R}^m)$-atom if there exists an open set Ω with finite measure satisfying:

1. $\text{supp } a \subset \Omega$;
2. a has a further decomposition as $a = \sum_{R \in m(\Omega)} a_R$, where a_R satisfy

(i) $\text{supp } a_R \subset 3R$;
(ii) \(\int_{\mathbb{R}^n} a_R(x, y) \, dx = 0 \), \(\forall y \in \mathbb{R}^m \), \(\int_{\mathbb{R}^m} a_R(x, y) \, dy = 0 \), \(\forall x \in \mathbb{R}^n \);

(3) \(\|a\|_2 \leq |\Omega|^{-1/2} \) and \(\sum_{R \in m(\Omega)} \|a_R\|_2^2 \leq |\Omega|^{-1} \).

Theorem C. \(f \in H^1(\mathbb{R}^n \times \mathbb{R}^m) \) if and only if \(f \) has a representation via atoms, i.e.

\[
f = \sum_j \lambda_j a_j,
\]

where the \(a_j \) are atoms as in Definition B and \(\sum_j |\lambda_j| \leq C\|f\|_{H^1(\mathbb{R}^n \times \mathbb{R}^m)} \).

In this paper, we develop several characterizations of Hardy space \(H^1(\mathbb{R}^n \times \mathbb{R}^m) \) using different norms on distinct variables. To begin with, we consider the following \((N, S) \)-function which appears as a nontangential maximal function on the first variable and as a Littlewood-Paley square function on the second variable. The notation \(\Gamma(x_1) = \{(y_1, t_1) \in \mathbb{R}_+^{n+1} : |x_1 - y_1| < t_1\} \) denotes the standard cone with vertex \(x_1 \in \mathbb{R}^n \). Similarly, \(\Gamma(x_2) = \{(y_2, t_2) \in \mathbb{R}_+^{m+1} : |x_2 - y_2| < t_2\} \) denotes the standard cone with vertex \(x_2 \in \mathbb{R}^m \):

\[
I_{N, S}(x_1, x_2) := \sup_{|y_1 - x_1| < t_1} \left(\iint_{\Gamma(x_2)} |\phi_{t_1} \psi_{t_2} \ast f(y_1, y_2)| \frac{dy_2 dt_2}{t_2^{m+1}} \right)^{1/2}.
\]

Here and throughout the whole paper, \(\phi \in C^\infty(\mathbb{R}^n) \), \(|\phi(x)| \leq C(1 + |x|)^{-n-1} \), \(|\nabla \phi(x)| \leq C(1 + |x|)^{-n-2} \), \(f \phi(x) \, dx = 1 \) and \(\phi_{t_1}(x) = t_1^{-n} \phi(\frac{x}{t_1}) \), \(\psi \in C^\infty(\mathbb{R}^m) \), \(|\psi(y)| \leq C(1 + |y|)^{-m-1} \), \(|\nabla \psi(y)| \leq C(1 + |y|)^{-m-2} \), \(f \psi(y) \, dy = 0 \), \(\int_0^\infty |\hat{\psi}(\xi t)|^2 \, dt \leq C \) and \(\psi_{t_2}(y) = t_2^{-m} \hat{\psi}(\frac{\xi}{t_2}) \), where \(t_1 > 0 \), \(t_2 > 0 \) and \(C \) is a positive constant.

Then we will prove that \(H^1(\mathbb{R}^n \times \mathbb{R}^m) \) can be characterized in terms of the \((N, S) \)-function. To see this, define

\[
H^1_{N,S}(\mathbb{R}^n \times \mathbb{R}^m) := \{ f \mid f \in L^1(\mathbb{R}^n \times \mathbb{R}^m), f_{N,S} \in L^1(\mathbb{R}^n \times \mathbb{R}^m) \}
\]

with the norm

\[
\|f\|_{H^1_{N,S}(\mathbb{R}^n \times \mathbb{R}^m)} := \|f\|_{L^1(\mathbb{R}^n \times \mathbb{R}^m)} + \|f_{N,S}\|_{L^1(\mathbb{R}^n \times \mathbb{R}^m)}.
\]

We then have the first main result of this paper as follows.

Theorem 1.1. \(H^1(\mathbb{R}^n \times \mathbb{R}^m) \simeq H^1_{N,S}(\mathbb{R}^n \times \mathbb{R}^m) \).

Note that Theorem A implies that \(H^1(\mathbb{R}^n \times \mathbb{R}^m) \) can be characterized by the product type nontangential maximal function or the Littlewood-Paley square function, which can be considered as the nontangential maximal function or the Littlewood-Paley square function (in the single parameter case) acting on both the first and second variables. Our result shows that one can also use the combination of the nontangential maximal function and the Littlewood-Paley square function (in the single parameter case) to give an equivalent characterization of \(H^1(\mathbb{R}^n \times \mathbb{R}^m) \). Thus, we can further consider the combinations among the Littlewood-Paley \(g \)-function, vertical maximal function, as well as the nontangential maximal function and the Littlewood-Paley square function in the single parameter case. That is, we
consider the \((\mathcal{N}, g)\)-function and \((S, \mathcal{N})\)-function as follows:
\[
\begin{align*}
\mathcal{N}_{g}(x_1, x_2) & := \sup_{|y_1 - x_1| < t_1} \left(\int_{0}^{\infty} \left| \phi_{t_1, y_2} * f(y_1, x_2) \right|^2 \frac{dt_2}{t_2^2} \right)^{1/2}; \\
S_{\mathcal{N}}(x_1, x_2) & := \left(\int_{\Gamma(x_2)} \sup_{|y_1 - x_1| < t_1} \left| \phi_{t_1, y_2} * f(y_1, y_2) \right|^2 \frac{dy_2 dz_2}{t_2^2} \right)^{1/2}.
\end{align*}
\]

Then we define
\[
\begin{align*}
H^{1}_{\mathcal{N}, g}(\mathbb{R}^n \times \mathbb{R}^m) & := \{ f | f \in L^1(\mathbb{R}^n \times \mathbb{R}^m), \mathcal{N}_{g} f \in L^1(\mathbb{R}^n \times \mathbb{R}^m) \}, \\
\text{with the norm} & \quad \| f \|_{H^{1}_{\mathcal{N}, g}(\mathbb{R}^n \times \mathbb{R}^m)} := \| f \|_{L^1(\mathbb{R}^n \times \mathbb{R}^m)} + \| \mathcal{N}_{g} f \|_{L^1(\mathbb{R}^n \times \mathbb{R}^m)},
\end{align*}
\]
and
\[
\begin{align*}
H^{1}_{S, \mathcal{N}}(\mathbb{R}^n \times \mathbb{R}^m) & := \{ f | f \in L^1(\mathbb{R}^n \times \mathbb{R}^m), S_{\mathcal{N}} f \in L^1(\mathbb{R}^n \times \mathbb{R}^m) \}, \\
\text{with the norm} & \quad \| f \|_{H^{1}_{S, \mathcal{N}}(\mathbb{R}^n \times \mathbb{R}^m)} := \| f \|_{L^1(\mathbb{R}^n \times \mathbb{R}^m)} + \| S_{\mathcal{N}} f \|_{L^1(\mathbb{R}^n \times \mathbb{R}^m)}.
\end{align*}
\]

Similarly, we can define spaces \(H^{1}_{g, \mathcal{N}}(\mathbb{R}^n \times \mathbb{R}^m), H^{1}_{S, g}(\mathbb{R}^n \times \mathbb{R}^m), H^{1}_{g, +}(\mathbb{R}^n \times \mathbb{R}^m)\) and \(H^{1}_{g, +}(\mathbb{R}^n \times \mathbb{R}^m)\) in the norms given by the \(L^1\) norm of the corresponding function plus the \(L^1\) norm of the function itself, e.g.
\[
\| f \|_{H^{1}_{g, \mathcal{N}}(\mathbb{R}^n \times \mathbb{R}^m)} := \| f \|_{L^1(\mathbb{R}^n \times \mathbb{R}^m)} + \| g \|_{L^1(\mathbb{R}^n \times \mathbb{R}^m)},
\]
where \(f_{+}(x_1, x_2) := \sup_{t_1 > 0} \left(\int_{\Gamma(x_2)} \left| \phi_{t_1, y_2} * f(x_1, y_2) \right|^2 \frac{dy_2 dt_2}{t_2^2} \right)^{1/2} \).

Now we state the second main result of this paper as follows.

Theorem 1.2. Let all the notation be the same as above. Then we have
\[
H^{1}(\mathbb{R}^n \times \mathbb{R}^m) \simeq H^{1}_{\mathcal{N}, g}(\mathbb{R}^n \times \mathbb{R}^m) \simeq H^{1}_{S, \mathcal{N}}(\mathbb{R}^n \times \mathbb{R}^m) \simeq H^{1}_{g, \mathcal{N}}(\mathbb{R}^n \times \mathbb{R}^m)
\]
\[
\simeq H^{1}_{S, g}(\mathbb{R}^n \times \mathbb{R}^m) \simeq H^{1}_{g, +}(\mathbb{R}^n \times \mathbb{R}^m) \simeq H^{1}_{g, +}(\mathbb{R}^n \times \mathbb{R}^m) \simeq H^{1}_{g, +}(\mathbb{R}^n \times \mathbb{R}^m).
\]

The paper is organized as follows. In Section 2, we introduce some definitions and preliminary results. In Section 3, we prove Theorem 1.2 using two approaches. In the last section we prove Theorem 1.2.
Suppose $\Omega \subset \mathbb{R}^n \times \mathbb{R}^m$ is open of finite measure. Denote by $m(\Omega)$ the maximal dyadic subrectangles of Ω. Let $m_1(\Omega)$ denote those dyadic subrectangles $R \subseteq \Omega$, $R = I \times J$ that are maximal in the x_1 direction. In other words if $S = I' \times J \supseteq R$ is a dyadic subrectangle of Ω, then $I = I'$. Define $m_2(\Omega)$ similarly.

Lemma 2.1. For any $R = I \times J \in m_1(\Omega)$, we set $\gamma_1(R) = \sup_{I' \supseteq I, J \subseteq \Omega} |I'/I|$, where

$$\Omega^* = \{x \in \mathbb{R}^{n+m}, \mathcal{M}(\chi_{\Omega})(x) > \frac{1}{2}\}.$$ Define γ_2 similarly. Then for any $\delta > 0$,

$$\sum_{R \in m_2(\Omega)} |R|^{-\delta} \gamma_1(R) \leq c_3 |\Omega|$$

and

$$\sum_{R \in m_1(\Omega)} |R|^{-\delta} \gamma_2(R) \leq c_3 |\Omega|,$$

where c_3 is a constant depending only on δ, not on Ω.

Moreover, we need the following tent space theory which has been studied by \cite{3}. \mathbb{R}_n^{+1} will denote the usual upper half-space in \mathbb{R}^{n+1}. If O is an open subset of \mathbb{R}^n, then the “tent” over O, denoted by \hat{O}, is given as $\hat{O} = \{(x,t) \in \mathbb{R}_n^{+1} : B(x,t) \subset O\}$. For any function $f(y,t)$ defined on \mathbb{R}_n^{+1} we will denote

$$\mathcal{A}(f)(x) = \left(\int_{\Gamma(x)} |f(y,t)|^2 \frac{dydt}{t^{n+1}} \right)^{1/2}.$$ As in \cite{3}, the “tent space” T^2 is defined as the space of functions f such that $\mathcal{A}(f) \in L_p(\mathbb{R}^n)$, when $p < \infty$. The resulting equivalence classes are then equipped with the norm $\|f\|_{T^2} = \|\mathcal{A}(f)\|_p$. We recall that a T^2_2 atom is a function $a(x,t)$ supported in \hat{Q} (for some cube $Q \subset \mathbb{R}^n$), with $\int_Q |a(x,t)|^2 dxdt/t \leq 1/|Q|$.

Proposition 2.2. Every element $F \in T^1_2(\mathbb{R}^{n+1})$ can be written as $F = \sum_j \lambda_j a_j$, where the a_j are T^1_2 atoms, and $\sum_j |\lambda_j| \leq C \|f\|_{T^2}$.

In the following Lemma 2.3 (see \cite{14} for the proof), we shall assume that $\Phi \in C_0^1(\mathbb{R}^n)$ is nonnegative, radial and nonincreasing, $\Phi = 1$ on $B(0,1/2)$, supp $\Phi \subset B(0,1)$ and $\int \Phi(x) \, dx = 1$. We may sometimes use capital letters to denote points in \mathbb{R}_+^{n+1}, for example, $X = (x,t)$, and set $u(x,t) = P_t f(x)$,

$$\nabla_X u(X) = (\nabla_x u, \partial_t u) \quad \text{and} \quad |\nabla_X u|^2 = |\nabla_x u|^2 + |\partial_t u|^2.$$

Lemma 2.3. For every $f,g \in L^2(\mathbb{R}^n)$, we have

$$\int_{\mathbb{R}_+^{n+1}} |t \nabla_X u(x,t)|^2 |\Phi_t * g(x)|^2 \frac{dxdt}{t} \leq \int_{\mathbb{R}^n} \left| f(x) \right|^2 \left| g(x) \right|^2 \, dx + \int_{\mathbb{R}_+^{n+1}} \left| u(x,t) \right|^2 \left| \Psi_t * g(x) \right|^2 \frac{dxdt}{t},$$

where Ψ is a vector-valued function with the same support as Φ and mean value 0.

3. Proof of Theorem 1.1

First we point out that the definition of the space $H^1_{N,S}(\mathbb{R}^n \times \mathbb{R}^m)$ is independent of the choices of functions ϕ and ψ which satisfy the conditions as in (1.1).

In fact, we first fix a function ψ satisfying the conditions as in (1.1), and then we prove that the definition of $H^1_{N,S}(\mathbb{R}^n \times \mathbb{R}^m)$ is independent of the choices of functions.
Proposition 3.2. Let \(\phi \) be a function in \(H_3 \). To see this, we set \(F_{t_2,y_2}(y_1) = \psi_{t_2} * f(y_1,y_2) \), where \(f \in L^1(\mathbb{R}^n \times \mathbb{R}^m) \). Then, define

\[
M_\phi(f)(x_1,x_2) := \sup_{t_1 > 0} \| F_{t_2,y_2} * \phi_t(x_1) \|_{B(x_2)},
\]

\[
F^*(x_1,x_2) := \sup_{|x_1 - y_1| < t_1} \| F_{t_2,y_2} * P_{t_1}(y_1) \|_{B(x_2)},
\]

where \(P_{t_1} \) is the Poisson kernel on \(\mathbb{R}^n \). Here and throughout this section, we use \(\| \cdot \|_{B(x_2)} \) to denote the vector-valued norm defined as in \((2.1) \). It is easy to see that \(P_{t_1} \) satisfies all conditions as \(\phi \) in \((1.1) \). Moreover, let \(F = \{ \| \cdot \|_{\alpha,\beta} \} \) be any finite collection of seminorms on the test function space \(S \), where \(\| \cdot \|_{\alpha,\beta} \) is given by \(\| \phi \|_{\alpha,\beta} = \sup_{x \in \mathbb{R}^n} |x^\alpha \partial_\beta^\beta \phi(x)| \) and \(\alpha, \beta \) are \(n \)-tuples of natural numbers. Define \(S_F = \{ \phi \in S : \| \phi \|_{\alpha,\beta} \leq 1, \text{ for all } \| \cdot \|_{\alpha,\beta} \in F \} \),

\[
M_F(f)(x_1,x_2) = \sup_{\phi \in S_F} M_\phi(f)(x_1,x_2).
\]

Then we have the following result:

Proposition 3.1. Let \(f \in L^1(\mathbb{R}^n \times \mathbb{R}^m) \). Then the following conditions are equivalent:

(i) There is a \(\phi \in S \) with \(\int \phi \, dx \neq 0 \) so that \(M_\phi(f) \in L^1(\mathbb{R}^n \times \mathbb{R}^m) \).

(ii) There is a collection \(F \) so that \(M_F(f) \in L^1(\mathbb{R}^n \times \mathbb{R}^m) \).

(iii) \(F^* \in L^1(\mathbb{R}^n \times \mathbb{R}^m) \).

We can obtain this proposition by following the proof of Theorem 1 as in Chapter 3, §1.2, \([17] \) with only minor modifications.

Proposition 3.2 implies that for any fixed \(\psi \), the definition of \(H^1_{N,S}(\mathbb{R}^n \times \mathbb{R}^m) \) is independent of the choices of the functions \(\phi \). Then in the proofs of Propositions 3.2 and 3.3, we fix a function \(\psi \) and then use the Poisson kernel in the definition of \(H^1_{N,S}(\mathbb{R}^n \times \mathbb{R}^m) \) instead of \(\phi \) to prove Theorem 1.1. This yields that the definition of \(H^1_{N,S}(\mathbb{R}^n \times \mathbb{R}^m) \) is also independent of the choices of \(\psi \).

Now we will prove Theorem 1.1 by showing the following two propositions.

Proposition 3.2. \(H^1(\mathbb{R}^n \times \mathbb{R}^m) \subseteq H^1_{N,S}(\mathbb{R}^n \times \mathbb{R}^m) \).

Proposition 3.3. \(H^1_{N,S}(\mathbb{R}^n \times \mathbb{R}^m) \subseteq H^1(\mathbb{R}^n \times \mathbb{R}^m) \).

Proof of Proposition 3.2. In this part, we give two approaches: one relies on the atomic decomposition for the product Hardy space \(H^1(\mathbb{R}^n \times \mathbb{R}^m) \) (see \([2, 8] \) for the idea); the other is due to the result of C. Fefferman and E.M. Stein (\([6] \)), using the distribution inequality.

Method 1 (via atomic decomposition). Let \(f(x) = \sum_j \lambda_j a_j(x) \), where the \(a_j \)'s are product atoms and \(\sum_{j=0}^{\infty} |\lambda_j| < \infty \). We note that the operator \(T_N,S : f \mapsto f_{N,S} \) is bounded on \(L^2(\mathbb{R}^n \times \mathbb{R}^m) \), where \(f_{N,S} \) was defined in \((1.1) \). Recently, Han et al. have shown that a linear operator \(T \), which is bounded on \(L^2(\mathbb{R}^n \times \mathbb{R}^m) \), is bounded from \(H^1(\mathbb{R}^n \times \mathbb{R}^m) \) to \(L^1(\mathbb{R}^n \times \mathbb{R}^m) \) if \(T \) is uniformly bounded on all product atoms in \(L^1(\mathbb{R}^n \times \mathbb{R}^m) \). See Theorem 1.3 of \([9] \). The proof is also applicable to sublinear operators. Thus, to prove Proposition 3.2, it suffices to show that there exists some constant \(C \) such that for each product atom \(a \),

\[
\| a_{N,S} \|_{L^1(\mathbb{R}^n \times \mathbb{R}^m)} \leq C.
\]
Assume that \(a = \sum_{R \in m(\Omega)} a_R \) is a product atom supported in some open set \(\Omega \) of \(\mathbb{R}^{n+m} \) with finite measure. For any \(R = I \times J \in m(\Omega) \), let \(t(I), t(J) \) be the side-lengths of cubes \(I \) and \(J \), and \(I' \) be the longest dyadic interval containing \(I \) so that \(I' \times J \subset \Omega^* = \{ x \in \mathbb{R}^{n+m} : M_s(\chi_\Omega)(x) > 1/2 \} \). Then \(I' \times J \) is in \(m_1(\Omega^*) \), and let \(J' \) be the longest dyadic interval so that \(J' \supseteq J \) and \(I' \times J' \subset \Omega^{**} \), where \(\Omega^{**} = \{ x \in \mathbb{R}^{n+m} : M_s(\chi_\Omega)(x) > 1/2 \} \). Let \(\tilde{R} \) be the 10-fold dilate of \(I' \times J' \). Clearly, the boundedness of the strong maximal function shows that \(\bigcup \tilde{R} \leq c|\Omega^{**}| \leq c|\Omega^*| \leq c|\Omega| \). We have

\[
\int_{\bigcup \tilde{R}} a_{N,S}(x) \, dx \leq C \big| \bigcup \tilde{R} \big|^{1/2} \| a_{N,S} \|_2 \leq C|\Omega|^{1/2} \| a_{N,S} \|_2.
\]

We claim that \(\| a_{N,S} \|_2 \leq C|\Omega|^{-1/2} \). In fact, observe that for each \(|x_1 - y_1| < t_1, y_2 \in \mathbb{R}^m \),

\[
|\phi_{t_1} * f(y_1, y_2)| \leq C M^{(1)}(f(\cdot, y_2))(x_1),
\]

where we use \(M^{(1)} \) to denote the Hardy-Littlewood maximal operator on the first variable. By using the \(L^2 \)-boundedness of \(M^{(1)} \) and the square function, we obtain

\[
\iint (a_{N,S}(x_1, x_2))^2 \, dx_1 dx_2 \leq C \iint \iint_{T(x_2)} (M^{(1)}(\psi_{t_2} * a(\cdot, y_2))(x_1))^2 \frac{dy_2 dt_2}{t_2^{n+1}} \, dx_1 dx_2
\]

\[
\leq C \iint \iint_{T(x_2)} |\psi_{t_2} * a(x_1, y_2)|^2 \frac{dy_2 dt_2}{t_2^{n+1}} \, dx_1 dx_2
\]

\[
\leq C|a|_2 \leq C|\Omega|^{-1/2}.
\]

Therefore, we have proved \(\int_{\bigcup \tilde{R}} a_{N,S}(x) \, dx \leq C \). It suffices to prove

\[
(3.4) \quad \int_{(\bigcup \tilde{R})^c} a_{N,S}(x) \, dx \leq C.
\]

One writes

\[
\int_{(\bigcup \tilde{R})^c} a_{N,S}(x) \, dx \leq \sum_{R \in m(\Omega)} \int_{(\tilde{R})^c} (a_R)_{N,S}(x) \, dx
\]

\[
\leq \sum_{R \in m(\Omega)} \int_{x_1 \notin 10I'} (a_R)_{N,S}(x) \, dx + \int_{x_2 \notin 10J'} (a_R)_{N,S}(x) \, dx
\]

\[
=: D + E.
\]

We first estimate the term \(D \). Observe that

\[
D = \sum_{R \in m(\Omega)} \left(\int_{x_1 \notin 10I'} + \int_{x_1 \notin 10I'} \int_{x_2 \notin 10J} \right) (a_R)_{N,S}(x) \, dx =: D_1 + D_2.
\]

Denote \(F_{t_2,y_2}(y_1) := \psi_{t_2} * a_R(y_1, y_2) \). By Hölder’s inequality,

\[
(3.5) \quad D_1 \leq C \sum_{R \in m(\Omega)} |J|^{1/2} \int_{x_1 \notin 10I'} \left(\int_{|x_1 - y_1| < t_1} \| \phi_{t_1} * F_{t_2,y_2}(y_1) \|_{B(x_2)}^2 \, dx_2 \right)^{1/2} \, dx_1.
\]

Denote the center of \(I \) and \(J \) by \(x_I \) and \(x_J \), respectively. By noting that \(|x_1 - y_1| < t_1, z_1 \in 3I \) and \(x_I \notin 10I' \), we can apply the cancellation of atoms
(i.e. (ii) of (2) in Definition B) to obtain

\[
|\phi_1 \psi_2 * (a_R)(y_1, y_2)| = \left| \int_{M} (\phi_1(y_1 - z_1) - \phi_1(y_1 - x_1)) \psi_2 *_{_{2}} (a_R)(z_1, y_2) d z_1 \right|
\]

\[
\leq C \frac{t_1}{(t_1 + |x_1 - x_I|)^{n+1}} \left(1 \wedge \frac{\ell(I)}{t_1} \right) \int_{M} |\psi_2 *_{_{2}} a_R(z_1, y_2)| d z_1
\]

\[
\leq C \frac{\ell(I)}{|x_1 - x_I|^{n+1}} |I|^{1/2} \left(\int_{M} |\psi_2 *_{_{2}} a_R(z_1, y_2)|^2 d z_1 \right)^{1/2},
\]

where \((1 \wedge (\ell(I)/t_1)) := \min(1, \ell(I)/t_1) \). By substituting (3.6) back into (3.5), we have

\[
D_1 \leq C \sum_{R \in \mathcal{M}(\Omega)} |R|^{1/2} \int_{x_1 \not\in 10 J} \frac{\ell(I)}{|x_1 - x_I|^{n+1}} \left(\int_{M} |a_R(z_1, y_2)|^2 d z_1 d y_2 \right)^{1/2} d x_1
\]

\[
\leq C \sum_{R \in \mathcal{M}(\Omega)} |R|^{1/2} \frac{\ell(I)}{\ell(I')} \|a_R\|_2
\]

\[
\leq C,
\]

where in the last inequality we have used Hölder’s inequality and Lemma 2.1.

Consider the term \(D_2 \). By \(\int a_R(z_1, z_2) d z_1 = 0 \) and \(\int a_R(z_1, z_2) d z_2 = 0 \), we have

\[
(3.7)
\]

\[
|\phi_1 \psi_2 * a_R(y_1, y_2)|
\]

\[
= \left| \int_{M} (\phi_1(y_1 - z_1) - \phi_1(y_1 - x_1)) \psi_2(y_2 - z_2) - \psi_2(y_2 - x_1) a_R(z_1, z_2) d z_1 d z_2 \right|
\]

\[
\leq C \frac{t_1}{(t_1 + |x_1 - x_I|)^{n+1}} \left(1 \wedge \frac{\ell(I)}{t_1} \right) (t_2 + |x_2 - x_J|)^{m+1} \left(1 \wedge \frac{\ell(J)}{t_2} \right) \|a_R\|_2 |R|^{1/2}
\]

\[
\leq C \frac{\ell(I)}{|x_1 - x_I|^{n+1}} \left((t_2 + |x_2 - x_J|)^{m+1} / \ell(J) \right) \|a_R\|_2 |R|^{1/2}.
\]

Therefore,

\[
D_2 \leq C \sum_{R \in \mathcal{M}(\Omega)} \|a_R\|_2 |R|^{1/2} \int_{x_1 \not\in 10 J} \int_{x_2 \not\in 10 J} \frac{\ell(I)}{|x_1 - x_I|^{n+1}}
\]

\[
\times \left(\int_0^{\infty} \frac{t_2}{(t_2 + |x_2 - x_J|)^{2m+1}} \left(1 \wedge \frac{\ell(J)}{t_2} \right)^{1/2} dt_2 \right) \frac{d x_1}{d x_2}
\]

\[
\leq C \sum_{R \in \mathcal{M}(\Omega)} \|a_R\|_2 |R|^{1/2} \int_{x_1 \not\in 10 J} \int_{x_2 \not\in 10 J} \frac{\ell(I)}{|x_1 - x_I|^{n+1}} \frac{\ell(J)^{1/2}}{|x_2 - x_J|^{m+1/2}} d x_1 d x_2
\]

\[
\leq C \sum_{R \in \mathcal{M}(\Omega)} \|a_R\|_2 |R|^{1/2} \frac{\ell(I)}{\ell(I')} \leq C,
\]

where the last inequality follows from Hölder’s inequality and Lemma 2.1.

We then estimate the term \(E \). Observe that

\[
E = \sum_{R \in \mathcal{M}(\Omega)} \left(\int_{x_1 \not\in 10 J} \int_{x_2 \not\in 10 J} + \int_{x_1 \not\in 10 J} \int_{x_2 \not\in 10 J} \right) (a_R)_{N,s}(x) d x =: E_1 + E_2.
\]
Therefore, we obtain the required estimate (3.4), which implies (3.3).

By the similar argument to (3.7), one writes

\[|\psi_{t_2} * a_R(x_1, y_2)| \leq \int_{\mathbb{R}^m} \left(1 \wedge \frac{\ell(J)}{t_2} \right) \frac{t_2^{1/2}}{(t_2 + |x_2 - x_1|)^{m+1/2}} |a_R(x_1, z_2)| dz_2. \]

Substituting (3.9) back into (3.8) and then using Lemma 2.1, we can obtain

\[E_1 \leq C \sum_{R \in m(\Omega)} |R|^{1/2} \left(\frac{\ell(J)}{k(J)} \right)^{1/2} \| \|a_R\| \leq C. \]

Thus, to prove (3.10), it suffices to prove that

\[\mathcal{S}_\beta(F)(x_1, x_2) = \left(\int_{\mathbb{R}^m} t_1 \nabla P_{t_1} * a_R(y_1) \right)_{\mathfrak{B}(x_2)} \left(\frac{dy_1 dt_1}{t_1^{m+1}} \right)^{1/2}, \]

\[F^*(x_1, x_2) = \sup_{|x_1 - y_1| < t_1} \left\| P_{t_1} \ast F_{t_2,y_2}(y_1) \right\|_{\mathfrak{B}(x_2)}, \]

where \(\mathfrak{B}(x_2) \) is as in (3.11).

To prove (3.11), it suffices to prove that

\[\int_{\mathbb{R}^m} F^*(x_1, x_2) dx_1 dx_2 \leq C \int_{\mathbb{R}^m} S_\beta(F)(x_1, x_2) dx_1 dx_2. \]
To show (3.13), we will prove that for all $\alpha > 0$ and a.e. $x_2 \in \mathbb{R}^m$,

\[
\lambda_{F^c}(\alpha) \leq C \left\{ \lambda_{S_{\beta}(F)}(\alpha) + \alpha^{-2} \int_{0}^{\alpha} s \lambda_{S_{\beta}(F)}(s) \, ds \right\}.
\]

Now let E_0 be those points at which E has relative density at least $1/2$; more precisely, set $E_0 = \{ x_1 \in \mathbb{R}^n : \text{for every cube } Q, \text{ such that } x_1 \in Q, \ |E \cap Q| \geq \frac{1}{2} |Q| \}$. Observe that since E is closed, $E_0 \subseteq E$; clearly E_0 is closed. If χ_A is the characteristic function of $A = E^c$, then $E_0^c = A^c \subseteq \{ x_1 \in \mathbb{R}^n : M^{(1)}(\chi_A)(x_1, x_2) > 1/2 \}$. Thus $|A^c| \leq C |A| = C \lambda_{S_{\beta}(F)}(\alpha)$.

We now form the region $\mathcal{R} = \bigcup_{e \in E_0} \Gamma(x_1)$ with the corresponding approximating regions \mathcal{R}_e whose boundaries, \mathcal{B}_e, are given as hypersurfaces $t = c\delta_\epsilon(x)$ with $\delta_\epsilon(x)$ smooth and $|\partial \delta_\epsilon/\partial x_j| \leq 1$, $j = 1, \ldots, n$. (See [13], page 206.) We have

\[
\int_{\mathcal{R}} S_{\beta}(F)(x_1, x_2)^2 \, dx_1 = \int_{\cup_{e \in E_0} \Gamma_{\beta}(x_1)} \left\| \nabla P_{t_1} * F_{t_2, y_2}(y_1) \right\|_{\mathcal{B}(x_2)}^2 \, dx_1 \in E : (y, t) \in \Gamma_{\beta}(x_1) \right\|_{\mathcal{B}(x_2)} \| t_1 \|^n dy_1 dt_1.
\]

In the second integral we restrict integration over $(y, t) \in \mathcal{R}$, which implies that for some $\hat{x} \in E_0$, $(y, t) \in \Gamma(\hat{x})$, i.e., $|\hat{x} - y| < t$. Then $(y, t) \in \Gamma_{\beta}(x_1)$ whenever $|x_1 - \hat{x}| < (\beta - 1)t$. Thus $\left\{ (x_1 \in E : (y, t) \in \Gamma_{\beta}(x_1)) \right\} \supseteq |E \cap B|$, where B is the ball centered at $\hat{x} \in E_0$ with radius $(\beta - 1)t$. In view of the definition of E_0, the latter quantity exceeds ct^n, and so

\[
\int_{\mathcal{R}} S_{\beta}(F)(x_1, x_2)^2 \, dx_1 \geq C \int_{\mathcal{R}} \left\| \nabla P_{t_1} * F_{t_2, y_2}(y_1) \right\|_{\mathcal{B}(x_2)}^2 \, dx_1 \int_{\mathcal{B}_e} \frac{dy_1 dt_1}{t_1}. \]

We write the last integral as

\[
C \int_{\mathcal{R}_e} \int_{\Gamma(x_2)} |\nabla P_{t_1} * F_{t_2, y_2}(y_1)|^2 \, dt_1 \, dy_1 dt_1 = C \int_{\mathcal{R}_e} \int_{\Gamma(x_2)} \frac{dy_1 dt_1}{t_1} \, dy_1 dt_1.
\]

Then, transform the integral by Green’s theorem, obtaining

\[
(3.15) \ \ \int_{\mathcal{R}} S_{\beta}(F)(x_1, x_2)^2 \, dx_1 \geq C_1 \int_{\mathcal{R}} \int_{\Gamma(x_2)} \left| P_{t_1} * F_{t_2, y_2}(y_1) \right|^2 \, d\sigma \frac{dy_2 dt_2}{t_2^{n+1}} - C_2 \int_{\mathcal{R}} \int_{\Gamma(x_2)} \left| P_{t_1} * F_{t_2, y_2}(y_1) \right| \, d\sigma \frac{dy_2 dt_2}{t_2^{n+1}},
\]

where C_1 and C_2 are two positive constants independent of ϵ.

Let

\[
\mathcal{J}_\epsilon^2 = \int_{\Gamma(x_2)} \int_{\mathcal{B}_e} \left| P_{t_1} * F_{t_2, y_2}(y_1) \right|^2 \, d\sigma \frac{dy_2 dt_2}{t_2^{n+1}} = \int_{\mathcal{B}_e} \left| P_{t_1} * F_{t_2, y_2}(y_1) \right|_{\mathcal{B}(x_2)}^2 \, d\sigma.
\]

We have

\[
\int_{\mathcal{B}_e} \left| P_{t_1} * F_{t_2, y_2}(y_1) \right|_{\mathcal{B}(x_2)}^2 \, d\sigma \leq C \int_{\mathcal{B}_e} (F^*)^2 \, d\sigma \leq C \int_{\mathcal{B}_e} (F^*)^2 \, dx_1 < \infty
\]

for a.e. $x_2 \in \mathbb{R}^m$. Hence \mathcal{J}_ϵ is finite for every ϵ.

We now divide the boundary \(B_\epsilon \) into two parts \(B_\epsilon = B_{\epsilon}^{E_0} \cup B_{\epsilon}^{B^*} \), where \(B_{\epsilon}^{E_0} \) is the part above the set \(E_0 \), and \(B_{\epsilon}^{B^*} \) is the part lying above the set \(B^* \). Next,

\[
\int_{\Gamma(x_2)} \int_{B_{\epsilon}} \left| P_{t_1} * F_{t_2,y_2}(y_1) \right| t_1 \left| \nabla P_{t_1} * F_{t_2,y_2}(y_1) \right| \, d\sigma \frac{dy_2 dt_2}{t_2^{m+1}} = \int_{\Gamma(x_2)} \left(\int_{B_{\epsilon}^{E_0}} + \int_{B_{\epsilon}^{B^*}} \right) \left| P_{t_1} * F_{t_2,y_2}(y_1) \right| t_1 \left| \nabla P_{t_1} * F_{t_2,y_2}(y_1) \right| \, d\sigma \frac{dy_2 dt_2}{t_2^{m+1}}.
\]

To estimate the above two terms, we recall the following result on harmonic functions.

Lemma 3.4 (ES). Suppose \(u \) is harmonic in \(\Gamma_\beta^\epsilon \). If \(\int_{\Gamma_\beta^\epsilon} |\nabla u|^2 \left| y \right|^{1-n} \, dx \, dy \leq 1 \), then \(|y \nabla u| \leq C \) in \(\Gamma_\beta^\epsilon \). Here \(\Gamma_\beta^\epsilon \) and \(\Gamma_\alpha^\epsilon \) are truncated cones with \(\beta > \alpha \), \(k > h \). \(C \) is a constant depending only on \(\alpha, \beta, h, k \) and the dimension \(n \).

Thus, by using Lemma 3.4, we have that \(t_1 \left| \nabla P_{t_1} * F_{t_2,y_2}(y_1) \right| _{B_{\epsilon}^{E_0}} \leq C \) since \(S_\beta^\epsilon (F(x_1,x_2)) \leq \alpha \) for \(x_1 \in E \). By Schwarz’s inequality, we get that

\[
\int_{\Gamma(x_2)} \int_{B_{\epsilon}^{E_0}} \left| P_{t_1} * F_{t_2,y_2}(y_1) \right| t_1 \left| \nabla P_{t_1} * F_{t_2,y_2}(y_1) \right| \, d\sigma \frac{dy_2 dt_2}{t_2^{m+1}} \leq C J_\epsilon^t \alpha \sigma (B_{\epsilon}^{B^*})^{1/2} + C J_\epsilon \alpha |B^*|^{1/2} \leq C J_\epsilon \alpha \frac{\lambda S_\beta^\epsilon (F(x_1,x_2))}{2} \alpha^{1/2} + C J_\epsilon \}

Moreover, \(I_\epsilon = \int_{\Gamma(x_2)} \int_{B_{\epsilon}^{E_0}} \left| P_{t_1} * F_{t_2,y_2}(y_1) \right| t_1 \left| \nabla P_{t_1} * F_{t_2,y_2}(y_1) \right| \, d\sigma \frac{dy_2 dt_2}{t_2^{m+1}} \to 0 \) as \(\epsilon \to 0 \). Hence, (3.15) gives \(J_\epsilon^t \leq C \int E S_\beta^\epsilon (F(x_1,x_2))^2 \, dx \, dx + C J_\epsilon \alpha \frac{\lambda S_\beta^\epsilon (F(x_1,x_2))}{2} \alpha^{1/2} + C J_\epsilon \}

for \(\epsilon \) small enough.

Next, for each \(\epsilon > 0 \), define a function \(f^\epsilon \) on \(\mathbb{R}^n \) by setting

\[
f^\epsilon(x_1) = C \left| P_{\epsilon,\alpha} F_{t_2,y_2}(x_1) \right| \leq C \alpha \chi_{B^*}(x_1),
\]

where \(\chi_{B^*} \) is the characteristic function of \(B^* \), and \(t = \epsilon, \alpha \) is the equation of the hypersurface \(B_\epsilon = \partial \mathcal{R}_\epsilon \). Let \(U_\epsilon(x_1,t_1) \) be the Poisson integral of the function \(\frac{t_1}{2} \), i.e., \(U_\epsilon(x_1,t_1) = P_{\epsilon,\alpha} f^\epsilon(x_1) \). We claim that

\[
\left\| P_{t_1} * F_{t_2,y_2}(x_1) \right\| _{B_{\epsilon}^{E_0}} \leq C U_\epsilon(x_1,t_1), \quad (x_1,t_1) \in B_\epsilon.
\]

In fact, choose \(\beta^* \) satisfying \(1 < \beta^* < \beta \). Then there exists a positive constant \(C \) such that \(B^* (y_1,t_1), C t_1 \subset \bigcap_{x_2 \in E_0} \Gamma_{\beta^*} (x_0) \) whenever \((y_1,t_1) \in B_\epsilon \), where \(B^* (y_1,t_1), C t_1 \) is the ball centered at \((y_1,t_1) \) with radius \(C t_1 \). Now from Lemma 3.4 we have that \(t_1 \left| \nabla P_{t_1} * F_{t_2,y_2}(y_1) \right| _{B_{\epsilon}^{E_0}} \leq C \alpha \) whenever \((y_1,t_1) \in B^* \). Let \(Q_1 = (y_1,t_1) \) and for any distinct point \(Q_2 \in B^* \), we have \(|Q_1 - Q_2| \leq C t_1 \). Moreover,

\[
\left\| P_{t_1} * F_{t_2,y_2}(\cdot)(Q_1) - P_{t_1} * F_{t_2,y_2}(\cdot)(Q_2) \right\| _{B_{\epsilon}^{E_0}} \leq C t_1 \sup_{Q' \in B^*} \left\| P_{t_1} * F_{t_2,y_2}(\cdot)(Q') \right\| _{B_{\epsilon}^{E_0}} \leq C \alpha \chi_{B^*} (y_1).
\]
Set $S_{t} = B_{t} \cap B'$. Then

\[
\begin{align*}
\|P_{t_{1}} \ast f_{t_{2}}(y_{1})\|_{B(\mathbb{R}^{n})} &= \|P_{t_{1}} \ast f_{t_{2}}(\cdot)(Q_{1})\|_{B(\mathbb{R}^{n})} \\
&\leq \frac{1}{|S_{t}|} \int_{S_{t}} \|P_{t_{1}} \ast f_{t_{2}}(\cdot)(Q_{2})\|_{B(\mathbb{R}^{n})} \, d\sigma + C\alpha \chi_{B'}(y_{1}) \\
&\leq \frac{C}{t_{1}^{n}} \int_{|z-y_{1}|<Ct_{1}} |f'(z)| \, dz \\
&\leq C \int_{|z-y_{1}|<Ct_{1}} \left(\frac{t_{1}^{2} + |z-y_{1}|^{2}}{t_{1}} \right)^{\frac{n+1}{2}} |f'(z)| \, dz \\
&\leq C P_{t_{1}^{*}}(f')(y_{1}) = U_{\epsilon}(y_{1}, t_{1}).
\end{align*}
\]

We then select a subsequence of the f' which converges weakly to $\tilde{f} \in L^{2}(\mathbb{R}^{n})$. From (3.16), we have

\[
\begin{align*}
\int_{\mathbb{R}^{n}} |\tilde{f}(x_{1})|^{2} \, dx_{1} \leq C\left\{ \int_{E} S_{\beta}(F)(x_{1}, x_{2})^{2} \, dx_{1} + \alpha^{2} \lambda_{S_{\beta}(F)}(\alpha) \right\}.
\end{align*}
\]

Passing to the limit, we obtain that

\[
\begin{align*}
\|P_{t_{1}} \ast f_{t_{2}}(y_{1})\|_{B(\mathbb{R}^{n})} \leq C U(y_{1}, t_{1}), \quad (y_{1}, t_{1}) \in \mathcal{R},
\end{align*}
\]

where U is the Poisson kernel of \tilde{f}, and $F^{*}(x_{1}) \leq U^{*}(x_{1})$ for $x_{1} \in E_{0}$. Thus, we have

\[
\begin{align*}
\lambda_{F^{*}}(\alpha) &\leq |E_{0}^{\alpha}| + |\{x_{1} \in E_{0} : F^{*}(x_{1}) > \alpha\}| \\
&\leq C\lambda_{S_{\beta}(F)}(\alpha) + \alpha^{-2} \int_{E_{0}} F^{*}(x_{1})^{2} \, dx_{1} \\
&\leq C\lambda_{S_{\beta}(F)}(\alpha) + \alpha^{-2} \int_{E_{0}} U^{*}(x_{1})^{2} \, dx_{1} \\
&\leq C\lambda_{S_{\beta}(F)}(\alpha) + \alpha^{-2} \int_{E_{0}} \tilde{f}(x_{1})^{2} \, dx_{1} \\
&\leq C\lambda_{S_{\beta}(F)}(\alpha) + C\alpha^{-2} \int_{E} S_{\beta}(F)(x_{1}, x_{2})^{2} \, dx_{1} \\
&\leq C\lambda_{S_{\beta}(F)}(\alpha) + C\alpha^{-2} \int_{0}^{\alpha} s\lambda_{S_{\beta}(F)}(s) \, ds,
\end{align*}
\]

which implies (3.13).

\[\square\]

Proof of Proposition 3.3. It suffices to prove that there exists a constant $C > 0$ such that

\[
\begin{align*}
(3.19) \int_{\mathbb{R}^{n} \times \mathbb{R}^{m}} \left(\int_{\Gamma(x_{1})} \int_{\Gamma(x_{2})} |t_{1} \nabla P_{t_{1}} \ast f_{t_{2}}(y_{1}, y_{2})|^{2} \frac{dy_{2} \, dt_{2}}{t_{2}^{m+1}} \frac{dy_{1} \, dt_{1}}{t_{1}^{m+1}} \right)^{1/2} \, dx_{1} \, dx_{2} \\
&\leq C \int_{\mathbb{R}^{n} \times \mathbb{R}^{m}} \sup_{|x_{1}-y_{1}|<t_{1}} \left(\int_{\Gamma(x_{2})} |P_{t_{1}} \ast f_{t_{2}}(y_{1}, y_{2})|^{2} \frac{dy_{2} \, dt_{2}}{t_{2}^{m+1}} \right)^{1/2} \, dx_{1} \, dx_{2}
\end{align*}
\]

for any $f \in H_{N,S}^{1}(\mathbb{R}^{n} \times \mathbb{R}^{m}) \cap L^{2}(\mathbb{R}^{n} \times \mathbb{R}^{m})$.

Let $S_{\beta}(F)(x_{1}, x_{2})$ and $F^{*}(x_{1}, x_{2})$ be the same as (3.11) and (3.12), respectively. Set $S(F)(x_{1}, x_{2}) = S_{1}(F)(x_{1}, x_{2})$. Thus, to prove (3.19), it suffices to prove that

\[
\begin{align*}
(3.20) \int_{\mathbb{R}^{n} \times \mathbb{R}^{m}} S(F)(x_{1}, x_{2}) \, dx_{1} \, dx_{2} \leq C \int_{\mathbb{R}^{n} \times \mathbb{R}^{m}} F^{*}(x_{1}, x_{2}) \, dx_{1} \, dx_{2}.
\end{align*}
\]
To prove (3.20), it is enough to show that for all $\alpha > 0$ and almost everywhere $x_2 \in \mathbb{R}^m$,

\begin{equation}
(3.21) \quad \int_{\{M^{(1)}(\chi_{F^*} > \alpha)(x_1) < 2^{-(n+1)}\}} S(F)(x_1, x_2)^2 \, dx_1 \leq C \alpha^2 \left| \{x_1 : F^*(x_1, x_2) > \alpha\} \right| + C \int_{\{x_1 : F^*(x_1, x_2) \leq \alpha\}} F^*(x_1, x_2)^2 \, dx_1.
\end{equation}

In fact, note that for almost everywhere $x_2 \in \mathbb{R}^m$, we have

\begin{equation}
(3.22) \quad \int_{\mathbb{R}^n} S(F)(x_1, x_2) \, dx_1 = \int_0^\infty \left| \{x_1 : S(F)(x_1, x_2) > \alpha\} \right| \, d\alpha.
\end{equation}

Suppose (3.22) holds. Then

\[
\left| \{x_1 : S(F)(x_1, x_2) > \alpha\} \right| \leq \left| \{x_1 : S(F)(x_1, x_2) > \alpha, M^{(1)}(\chi_{F^*} > \alpha)(x_1) < 2^{-(n+1)}\} \right| \\
+ \left| \{x_1 : M^{(1)}(\chi_{F^*} > \alpha)(x_1) \geq 2^{-(n+1)}\} \right| \\
\leq \frac{1}{\alpha^2} \int_{\{M^{(1)}(\chi_{F^*} > \alpha)(x_1) < 2^{-(n+1)}\}} S(F)(x_1, x_2)^2 \, dx_1 \\
+ C 2^{(n+1)} \left| \{x_1 : F^*(x_1, x_2) > \alpha\} \right|
\]

\[
\leq C \frac{1}{\alpha^2} \int_{\{x_1 : F^*(x_1, x_2) \leq \alpha\}} F^*(x_1, x_2)^2 \, dx_1 \\
+ C \left| \{x_1 : F^*(x_1, x_2) > \alpha\} \right|.
\]

By integrating α and x_2 on both sides of the inequality above, we then obtain (3.20).

Now let us prove (3.21):

\[
\int_{\{M^{(1)}(\chi_{F^*} > \alpha)(x_1) < 2^{-(n+1)}\}} S(F)(x_1, x_2)^2 \, dx_1 \\
\leq \int_{\mathbb{R}^n} \int_{\Gamma(x_1)} \left| t_1 \nabla P_{t_1} * F_{t_2, y_2}(y_1) \right|^2 \, dx_1 \, dy_1 \, dt_1 \, dt_2.
\]

Note that

\[
\int_{\{M^{(1)}(\chi_{F^*} > \alpha)(x_1) < 2^{-(n+1)}\}} \int_{\Gamma(x_1)} \left| t_1 \nabla P_{t_1} * F_{t_2, y_2}(y_1) \right|^2 \, dt_1 \, dy_1 \, dt_1 \\
\leq \int_{\mathbb{R}^n} \left| \nabla P_{t_1} * F_{t_2, y_2}(y_1) \right|^2 \, dt_1 \, dy_1,
\]

where we use $B(y_1, t_1)$ to denote the ball in \mathbb{R}^n centered at y_1 with radius t_1, and

\[
R^* = \{(y_1, t_1) : \left| B(y_1, t_1) \cap \{z : F^*(z, x_2) > \alpha\} \right| \leq 2^{-(n+1)} \left| B(y_1, t_1) \right|\}.
\]

Thus, we have obtained that

\[
\int_{\{M^{(1)}(\chi_{F^*} > \alpha)(x_1) < 2^{-(n+1)}\}} S(F)(x_1, x_2)^2 \, dx_1 \\
\leq \int_{\mathbb{R}^n} \left| \nabla P_{t_1} * F_{t_2, y_2}(y_1) \right|^2 \, dt_1 \, dy_1.
\]
It is easy to check that if \(|B(y_1, t_1) \cap \{z : F^*(z, x_2) > \alpha\}| \leq 2^{-(n+1)}|B(y_1, t_1)|\), then \(g \ast \Phi_{t_1}(y_1) > C\) for some constant \(C > 0\), where \(\Phi \in C^0_0(\mathbb{R}^n)\) is as in Lemma 2.3 and \(g(x) = \chi_{\{F^*(x, x_2) \leq \alpha\}}(x)\). This, together with Lemma 2.3 implies

\[
\int_{(\mathcal{M}^{(1)}(x;F^*>\alpha)(x_1) < 2^{-(n+1)})} S(F)(x_1, x_2)^2 \, dx_1 \leq C \int_{\mathbb{R}} \|\nabla P_{t_1} \ast_1 F_{t_2, y_2}(y_1)\|_{B(x_2)}^2 \Phi_{t_1} \ast g(y_1) \, t_1 \, dy_1 \, dt_1
\]

\[
\leq C \int_{\mathbb{R}} \left(\int_{\Gamma(x_2)} \int_{\mathbb{R}^{n+1}} |\nabla P_{t_1} \ast_1 F_{t_2, y_2}(y_1)|^2 \Phi_{t_1} \ast g(y_1) \right) \, t_1 \, dy_1 \, dt_1 \frac{dy_2 \, dt_2}{t_2^{n+1}}
\]

\[
\leq C \int_{\mathbb{R}^n} \|F_{t_2, y_2}(x_1)\|_{B(x_2)}^2 \, g(x_1) \, dx_1 \frac{dy_1 \, dt_1}{t_1} + C \int_{\mathbb{R}^{n+1}} \|P_{t_1} \ast_1 F_{t_2, y_2}(y_1)\|_{B(x_2)}^2 \Phi_{t_1} \ast g(y_1) \frac{dy_1 \, dt_1}{t_1}
\]

\[
= I + II,
\]

where the third inequality follows from Lemma 2.3.

For the term I, from the definitions of \(g(x)\) and \(F^*(x_1, x_2)\), we have

\[
I \leq C \int_{\{x_1 : F^*(x_1, x_2) \leq \alpha\}} F^*(x_1, x_2)^2 \, dx_1.
\]

As for the term II, we only need to consider \(\Psi_{t_1} \ast (g)(y_1) \neq 0\). In this case, \(B(y_1, t_1) \cap \{z_1, F^*(z_1, x_2) \leq \alpha\} \neq \emptyset\). Thus, there exists a point \(z_1^0 \in \mathbb{R}^n\) such that \(|z_1^0 - y_1| < t_1\) and \(F^*(z_1^0, x_2) \leq \alpha\). By the definition of \(F^*(z_1^0, x_2)\), we have

\[
\|P_{t_1} \ast_1 F_{t_2, y_2}(y_1)\|_{B(x_2)} \leq \sup_{|z_1 - y_1| < t_1} \|P_{t_1} \ast_1 F_{t_2, y_2}(z_1)\|_{B(x_2)} = F^*(z_1^0, x_2) \leq \alpha.
\]

Therefore, by (3.23) and the cancellation condition of \(\Psi\), we obtain

\[
II \leq C \alpha^2 \int_{\mathbb{R}^{n+1}} \|\Psi_{t_1} \ast \chi_{F^*(\cdot, x_2) \leq \alpha}(y_1)\|^2 \frac{dy_1 \, dt_1}{t_1}
\]

\[
= C \alpha^2 \int_{\mathbb{R}^{n+1}} \|\Psi_{t_1} \ast \chi_{F^*(\cdot, x_2) > \alpha}(y_1)\|^2 \frac{dy_1 \, dt_1}{t_1}
\]

\[
\leq C \alpha^2 \left\{|y_1 : F^*(y_1, x_2) > \alpha\}\right|.
\]

Combining the estimates of I and II, we can see that (3.24) holds, which implies that (3.20) holds. This completes the proof of Theorem 1.1 \(\square\)

4. Proof of Theorem 1.2

4.1. Proof of \(H^1(\mathbb{R}^n \times \mathbb{R}^m) \simeq H^1_{N,g}(\mathbb{R}^n \times \mathbb{R}^m)\). By the similar argument to Method 1 of Proposition 3.2, we can easily check that

\[
H^1(\mathbb{R}^n \times \mathbb{R}^m) \subset H^1_{N,g}(\mathbb{R}^n \times \mathbb{R}^m) \quad \text{with} \quad \|f\|_{H^1_{N,g}(\mathbb{R}^n \times \mathbb{R}^m)} \leq C\|f\|_{H^1(\mathbb{R}^n \times \mathbb{R}^m)}.
\]
To prove the converse part, it suffices to prove that

\[(4.24) \quad \iint \left(\int_0^\infty \int_0^\infty \left| \psi_t \psi_{t_2} \ast f(x_1, x_2) \right|^2 \frac{dt_2 \, dt_1}{t_2 \, t_1} \right)^{1/2} \, dx_1 \, dx_2 \leq C \int \sup_{|x_2 - y_2| < \tau_1} \left(\int_0^\infty \left| \phi_t \psi_{t_2} \ast f(y_1, x_2) \right|^2 \frac{dt_2}{t_2} \right)^{1/2} \, dx_1 \, dx_2.\]

Denote by \(\mathcal{B}\) the vector-valued function space \(\{F_{t_2, x_2}(y_1) : y_1 \in \mathbb{R}^n, t_2 \in (0, \infty), x_2 \in \mathbb{R}^m\}\) with the norm

\[\|F_{t_2, x_2}(y_1)\|_\mathcal{B} = \left(\int_0^\infty \left| F_{t_2}(y_1, x_2) \right|^2 \frac{dt_2}{t_2} \right)^{1/2}.\]

We will prove (4.24) by two steps. Firstly, we can prove

\[(4.25) \quad \iint \left(\int_{\Gamma(x_1)} \left\| \psi_t \psi_{t_2} \ast f(y_1, x_2) \right\|_\mathcal{B}^{2} \frac{dy_1 \, dt_1}{t_1^{n+1}} \right)^{1/2} \, dx_1 \, dx_2 \leq C \int \sup_{|x_2 - y_2| < \tau_1} \left(\int_0^\infty \left\| \phi_t \psi_{t_2} \ast f(y_1, x_2) \right\|_\mathcal{B}^{2} \frac{dt_2}{t_2} \right)^{1/2} \, dx_1 \, dx_2.\]

In fact, the proof is similar to that of Proposition 3.3 with the minor modification that \(\| \cdot \|_\mathcal{B}(x_2)\) is replaced by \(\| \cdot \|_\mathcal{B}\).

Secondly, we claim that

\[(4.26) \quad \left\| \left(\int_0^\infty |F(x, t)|^2 \frac{dt}{t} \right)^{1/2} \right\|_{L^1(\mathbb{R}^n)} \leq C \left\| \left(\int_{\Gamma(x)} |F(y, t)|^2 \frac{dy \, dt}{t^{n+1}} \right)^{1/2} \right\|_{L^1(\mathbb{R}^n)}.\]

We observe that the right part of the inequality above is the \(T_2^1\) norm of the function \(F(x, t)\). By Proposition 2.2 we obtain \(F(x, t) = \sum_j \lambda_j a_j(x, t)\), where \(a_j(x, t)\) are \(T_2^1\) atoms.

To prove (4.26), it is enough to prove that for each \(T_2^1\) atom \(a(x, t)\) associated to some cube \(Q\), there exists a constant \(C\) such that

\[\left\| \left(\int_0^\infty |a(x, t)|^2 \frac{dt}{t} \right)^{1/2} \right\|_{L^1(\mathbb{R}^n)} \leq C.\]

In fact, by Hölder’s inequality and the definition of the \(T_2^1\) atom (see Section 2), we have

\[\int_{\mathbb{R}^n} \left(\int_0^\infty |a(y, t)|^2 \frac{dt}{t} \right)^{1/2} \, dy = \int_Q \left(\int_0^{|Q|} |a(y, t)|^2 \frac{dt}{t} \right)^{1/2} \, dy \leq \left(\int_Q |a(y, t)|^2 \frac{dy \, dt}{t^{n+1}} \right)^{1/2} |Q|^{1/2} \leq C.\]

Therefore, we get (4.26). Let \(F = \left(\int_0^\infty |\psi_t \psi_{t_2} \ast f(x_1, x_2)|^2 \frac{dt_2}{t_2} \right)^{1/2}\). Substituting \(F\) back into (4.24), we have

\[\int_{\mathbb{R}^n} \left(\int_0^\infty \int_0^\infty |\psi_t \psi_{t_2} \ast f(x_1, x_2)|^2 \frac{dt_2 \, dt_1}{t_2 \, t_1} \right)^{1/2} \, dx_1 \leq C \int_{\mathbb{R}^n} \left(\int_{\Gamma(x_1)} \int_0^\infty |\psi_t \psi_{t_2} \ast f(y_1, x_2)|^2 \frac{dt_2 \, dy_1 \, dt_1}{t_2 \, t_1^{n+1}} \right)^{1/2} \, dx_1.\]
Integrating x_2 on both sides of the inequality above, we obtain

$$\int\int \left(\int_0^\infty \int_0^\infty |\psi_{t_1} \psi_{t_2} * f(x_1, x_2)|^2 \frac{dt_2 dt_1}{t_2 t_1} \right)^{1/2} dx_1 dx_2 \leq C \int\int \left(\int\int_{\Gamma(x_1)} \|\psi_{t_1} \psi_{t_2} * f(y_1, x_2)\|^2 \frac{dy_1 dt_1}{t_1^{n+1}} \right)^{1/2} dx_1 dx_2. \tag{4.27}$$

(4.27), together with (4.25), implies \(4.24\).

4.2. \(H^1(\mathbb{R}^n \times \mathbb{R}^m) \simeq H^1_{S,N}(\mathbb{R}^n \times \mathbb{R}^m)\). It is easy to see that \(\|f\|_{H^1_{S,N}(\mathbb{R}^n \times \mathbb{R}^m)} \leq \|f\|_{H^1_{S,N}(\mathbb{R}^n \times \mathbb{R}^m)}\), which, together with the Main Theorem, implies \(H^1_{S,N}(\mathbb{R}^n \times \mathbb{R}^m) \subset H^1(\mathbb{R}^n \times \mathbb{R}^m)\).

The proof of the inclusion \(H^1(\mathbb{R}^n \times \mathbb{R}^m) \subset H^1_{S,N}(\mathbb{R}^n \times \mathbb{R}^m)\) can be obtained by the similar argument to that of Method 1 of Proposition 3.2.

4.3. By Subsections 4.1 and 4.2, we can obtain all the equivalent characterizations of \(H^1(\mathbb{R}^n \times \mathbb{R}^m)\) mentioned in Theorem 1.2.

ACKNOWLEDGMENTS

The authors would like to thank Professor Yongsheng Han for helpful suggestions and discussions. The authors also express their gratitude to the referee for a careful reading of the manuscript, giving numerous valuable suggestions to improve its mathematical accuracy.

REFERENCES

Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, People’s Republic of China

E-mail address: liji6@mail.sysu.edu.cn

Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, People’s Republic of China

E-mail address: songl@mail.sysu.edu.cn

Department of Mathematics, Shantou University, Shantou, 515063, People’s Republic of China

E-mail address: cqtan@stu.edu.cn