Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Various characterizations of product Hardy space


Authors: Ji Li, Liang Song and Chaoqiang Tan
Journal: Proc. Amer. Math. Soc. 139 (2011), 4385-4400
MSC (2010): Primary 42B30, 42B35; Secondary 42B25, 46E40
DOI: https://doi.org/10.1090/S0002-9939-2011-10852-9
Published electronically: April 22, 2011
MathSciNet review: 2823084
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This article deals with the characterizations of Hardy space $ H^1$ on $ \mathbb{R}^n\times\mathbb{R}^m$ using different norms on distinct variables. This result can be applied to the boundedness of certain operators on $ H^1(\mathbb{R}^n\times\mathbb{R}^m)$.


References [Enhancements On Off] (What's this?)

  • 1. S-Y. A. Chang and R. Fefferman, The Calderón-Zygmund decomposition on product domains, Amer. J. Math., 104 (1982), 445-468. MR 658542 (84a:42028)
  • 2. S-Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and $ H^p$-theory on product domains, Bull. Amer. Math. Soc. (N.S.), 12 (1985), 1-43. MR 766959 (86g:42038)
  • 3. R.R. Coifman, Y. Meyer and E.M. Stein, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal., 62 (1985), 304-335. MR 791851 (86i:46029)
  • 4. R. Fefferman, Calderón-Zygmund theory for product domains: $ H^p$ spaces, Proc. Nat. Acad. Sci. USA, 83 (1986), 840-843. MR 828217 (87h:42032)
  • 5. R. Fefferman, Multiparameter Fourier analysis, Beijing Lecture in Harmonic Analysis, edited by E.M. Stein, 47-130, Princeton Univ. Press, Princeton, NJ, 1986. MR 864371 (89a:42001)
  • 6. C. Fefferman and E.M. Stein, $ H^p$ spaces of several variables, Acta Math., 129 (1972), 137-193. MR 0447953 (56:6263)
  • 7. R. Gundy and E.M. Stein, $ H^p$ theory for the poly-disc, Proc. Nat. Acad. Sci., 76 (1979), 1026-1029. MR 524328 (80j:32012)
  • 8. Y.S. Han, M.Y. Lee, C.C. Lin and Y.C. Lin, Calderón-Zygmund operators on product Hardy spaces, J. Funct. Anal., 258 (2010), 2834-2861. MR 2593346
  • 9. Y.S. Han, G.Z. Lu and K. Zhao, Discrete Calderón's identity, atomic decomposition and boundedness criterion of operators on multiparameter Hardy spaces, J. Geom. Anal., 20 (2010), 670-689. MR 2610894
  • 10. J.L. Journé, A covering lemma for product spaces, Proc. Amer. Math. Soc., 96 (1986), 593-598. MR 826486 (87g:42028)
  • 11. J.L. Journé, Calderón-Zygmund operators on product spaces, Rev. Mat. Iberoamericana, 1 (1985), 55-91. MR 836284 (88d:42028)
  • 12. J.L. Journé, Two problems of Calderón-Zygmund theory on product spaces, Ann. Inst. Fourier (Grenoble), 38 (1988), 111-132. MR 949001 (90b:42031)
  • 13. M. Lacey, S. Petermichl, J. Pipher and B. Wick, Multiparameter Riesz commutators, Amer. J. Math., 131 (2009), 731-769. MR 2530853 (2010d:42021)
  • 14. K. Merryfield, On the area integral, Carleson measures and $ H\sp p$ in the polydisc, Indiana Univ. Math. J., 34 (1985), 663-685. MR 794581 (87c:42023)
  • 15. C. Muscalu, J. Pipher, T. Tao and C. Thiele, Bi-parameter paraproducts, Acta Math., 193 (2004), 269-296. MR 2134868 (2005m:42028)
  • 16. C. Muscalu, J. Pipher, T. Tao and C. Thiele, Multi-parameter paraproducts, Rev. Mat. Iberoamericana, 22 (2006), 963-976. MR 2320408 (2008b:42037)
  • 17. E.M. Stein, Harmonic analysis: Real variable methods, orthogonality and oscillatory integrals, Princeton Univ. Press, Princeton, NJ, 1993. MR 1232192 (95c:42002)
  • 18. E.M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, NJ, 1970. MR 0290095 (44:7280)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 42B30, 42B35, 42B25, 46E40

Retrieve articles in all journals with MSC (2010): 42B30, 42B35, 42B25, 46E40


Additional Information

Ji Li
Affiliation: Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, People’s Republic of China
Email: liji6@mail.sysu.edu.cn

Liang Song
Affiliation: Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, People’s Republic of China
Email: songl@mail.sysu.edu.cn

Chaoqiang Tan
Affiliation: Department of Mathematics, Shantou University, Shantou, 515063, People’s Republic of China
Email: cqtan@stu.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-2011-10852-9
Keywords: Multiparameter harmonic analysis, Hardy space
Received by editor(s): July 10, 2010
Received by editor(s) in revised form: July 27, 2010, and October 20, 2010
Published electronically: April 22, 2011
Additional Notes: The first author is supported by NNSF of China (11001275).
The second author is supported by NNSF of China (11001276) and is the corresponding author.
The third author is supported by FDYT of Guangdong (LYM08059).
Communicated by: Michael T. Lacey
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society