Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Embedding dendriform algebra into its universal enveloping Rota-Baxter algebra


Authors: Yuqun Chen and Qiuhui Mo
Journal: Proc. Amer. Math. Soc. 139 (2011), 4207-4216
MSC (2010): Primary 13P10, 16S15; Secondary 16W99, 17A50
DOI: https://doi.org/10.1090/S0002-9939-2011-10889-X
Published electronically: April 26, 2011
MathSciNet review: 2823066
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, by using Gröbner-Shirshov bases for Rota-Baxter algebras, we prove that every dendriform algebra over a field of characteristic 0 can be embedded into its universal enveloping Rota-Baxter algebra.


References [Enhancements On Off] (What's this?)

  • 1. G. E. Andrew, L. Guo, W. Keigher, K. Ono, Baxter algebras and Hopf algebras, Trans. Amer. Math. Soc. 355 (2003), 4639-4656. MR 1990765 (2004f:16061)
  • 2. M. Aymon and P.-P. Grivel, Un theoreme de Poincaré-Birkhoff-Witt pour les algebres de Leibniz, Comm. Algebra 31 (2003), 527-544. MR 1968912 (2004b:17004)
  • 3. G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math. 10 (1960), 731-742. MR 0119224 (22:9990)
  • 4. L. A. Bokut, Yuqun Chen and Xueming Deng, Gröbner-Shirshov bases for Rota-Baxter algebras, Siberian Math. J. 51(6) (2010), 978-988.
  • 5. P. Cartier, On the structure of free Baxter algebras, Adv. Math. 9 (1972), 253-265. MR 0338040 (49:2807)
  • 6. K. Ebrahimi-Fard, Loday-type algebras and the Rota-Baxter relation, Lett. Math. Phys. 61(2) (2002), 139-147. MR 1936573 (2004b:17003)
  • 7. K. Ebrahimi-Fard and L. Guo, Rota-Baxter algebras and dendriform algebras, Journal of Pure and Applied Algebra 212(2) (2008), 320-339. MR 2357335 (2008i:16036)
  • 8. K. Ebrahimi-Fard and L. Guo, Free Rota-Baxter algebras and rooted trees, J. Algebra and Its Applications 7 (2008), 167-194. MR 2417040 (2009b:05260)
  • 9. P. S. Kolesnikov, Conformal representations of Leibniz algebras, Siberian Math. J. 49 (2008), 429-435. MR 2442537 (2009e:17005)
  • 10. J.-L. Loday, Dialgebras, in Dialgebras and related operads, Lecture Notes in Math., 1763, Springer, Berlin, 2001, 7-66. MR 1860994 (2002i:17004)
  • 11. J.-L. Loday, Scindement d'associativité et algèbres de Hopf. Actes des Journées Mathématiques à la Mémoire de Jean Leray, 155-172, Sémin. Congr., 9, Soc. Math. France, Paris, 2004. MR 2145941 (2006a:16054)
  • 12. D. Quillen, Rational homotopy theory, Ann. of Math. (2) 90(2) (1969), 205-295. MR 0258031 (41:2678)
  • 13. G. Rota, Baxter operators, an introduction, in: Gian-Carlo Rota on combinatorics. Introductory papers and commentaries, Joseph P. S. Kung, editor, Birkhäuser, Boston, 1995. MR 1392961 (99b:01027)
  • 14. I. P. Shestakov, Every Akivis algebra is linear, Geometriae Dedicata 77 (1999), 215-223. MR 1713296 (2000f:17004)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 13P10, 16S15, 16W99, 17A50

Retrieve articles in all journals with MSC (2010): 13P10, 16S15, 16W99, 17A50


Additional Information

Yuqun Chen
Affiliation: School of Mathematical Sciences, South China Normal University, Guangzhou 510631, People’s Republic of China
Email: yqchen@scnu.edu.cn

Qiuhui Mo
Affiliation: School of Mathematical Sciences, South China Normal University, Guangzhou 510631, People’s Republic of China
Email: scnuhuashimomo@126.com

DOI: https://doi.org/10.1090/S0002-9939-2011-10889-X
Keywords: Gröbner-Shirshov basis, universal enveloping algebra, dendriform algebra, Rota-Baxter algebra
Received by editor(s): April 20, 2010
Received by editor(s) in revised form: August 27, 2010, and October 20, 2010
Published electronically: April 26, 2011
Additional Notes: The first author was supported in part by the NNSF of China (Nos. 10771077, 10911120389) and the NSF of Guangdong Province (No. 06025062).
Communicated by: Birge Huisgen-Zimmermann
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society