Infinite multiplicity for an inhomogeneous supercritical problem in entire space

Authors:
Baishun Lai and Zhihao Ge

Journal:
Proc. Amer. Math. Soc. **139** (2011), 4409-4418

MSC (2000):
Primary 35J25, 35J20

Published electronically:
April 27, 2011

MathSciNet review:
2823086

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we will prove the existence of infinitely many positive solutions to the following supercritical problem by using the Liapunov-Schmidt reduction method and asymptotic analysis:

**1.**Soohyun Bae and Wei-Ming Ni,*Existence and infinite multiplicity for an inhomogeneous semilinear elliptic equation on 𝐑ⁿ*, Math. Ann.**320**(2001), no. 1, 191–210. MR**1835068**, 10.1007/PL00004468**2.**Soohyun Bae, Tong Keun Chang, and Dae Hyeon Pahk,*Infinite multiplicity of positive entire solutions for a semilinear elliptic equation*, J. Differential Equations**181**(2002), no. 2, 367–387. MR**1907146**, 10.1006/jdeq.2001.4079**3.**Guy Bernard,*An inhomogeneous semilinear equation in entire space*, J. Differential Equations**125**(1996), no. 1, 184–214. MR**1376065**, 10.1006/jdeq.1996.0029**4.**Juan Dávila, Manuel del Pino, Monica Musso, and Juncheng Wei,*Standing waves for supercritical nonlinear Schrödinger equations*, J. Differential Equations**236**(2007), no. 1, 164–198. MR**2319924**, 10.1016/j.jde.2007.01.016**5.**Juan Dávila, Manuel del Pino, Monica Musso, and Juncheng Wei,*Fast and slow decay solutions for supercritical elliptic problems in exterior domains*, Calc. Var. Partial Differential Equations**32**(2008), no. 4, 453–480. MR**2402919**, 10.1007/s00526-007-0154-1**6.**Manuel del Pino,*Supercritical elliptic problems from a perturbation viewpoint*, Discrete Contin. Dyn. Syst.**21**(2008), no. 1, 69–89. MR**2379457**, 10.3934/dcds.2008.21.69**7.**Manuel del Pino and Juncheng Wei,*Problèmes elliptiques supercritiques dans des domaines avec de petits trous*, Ann. Inst. H. Poincaré Anal. Non Linéaire**24**(2007), no. 4, 507–520 (English, with English and French summaries). MR**2334989**, 10.1016/j.anihpc.2006.03.001**8.**Yinbin Deng, Yi Li, and Fen Yang,*On the stability of the positive steady states for a nonhomogeneous semilinear Cauchy problem*, J. Differential Equations**228**(2006), no. 2, 507–529. MR**2289543**, 10.1016/j.jde.2006.02.010**9.**R. H. Fowler, Further studies on Emden's and similar differential equations, Quart. J. Math. 2 (1931), 259-288.**10.**Henrik Egnell and Ingemar Kaj,*Positive global solutions of a nonhomogeneous semilinear elliptic equation*, J. Math. Pures Appl. (9)**70**(1991), no. 3, 345–367. MR**1113816****11.**Tzong-Yow Lee,*Some limit theorems for super-Brownian motion and semilinear differential equations*, Ann. Probab.**21**(1993), no. 2, 979–995. MR**1217576****12.**S. I. Pokhozhaev,*Solvability of an elliptic problem in 𝑅ⁿ with a supercritical index of nonlinearity*, Dokl. Akad. Nauk SSSR**313**(1990), no. 6, 1356–1360 (Russian); English transl., Soviet Math. Dokl.**42**(1991), no. 1, 215–219. MR**1080040****13.**Changfeng Gui,*Positive entire solutions of the equation Δ𝑢+𝑓(𝑥,𝑢)=0*, J. Differential Equations**99**(1992), no. 2, 245–280. MR**1184056**, 10.1016/0022-0396(92)90023-G

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35J25,
35J20

Retrieve articles in all journals with MSC (2000): 35J25, 35J20

Additional Information

**Baishun Lai**

Affiliation:
Institute of Contemporary Mathematics, Henan University, Kaifeng 475004, People’s Republic of China

Address at time of publication:
School of Mathematics and Information Science, Henan University, Kaifeng 475004, People’s Republic of China

Email:
laibaishun@henu.edu.cn

**Zhihao Ge**

Affiliation:
School of Mathematics and Information Science, Henan University, Kaifeng 475004, People’s Republic of China

Email:
zhihaoge@gmail.com

DOI:
https://doi.org/10.1090/S0002-9939-2011-10902-X

Keywords:
Critical exponents,
linearized operators,
supercritical problem.

Received by editor(s):
October 21, 2010

Published electronically:
April 27, 2011

Additional Notes:
The first author was supported in part by National Natural Science Foundation of China Grant 10971061 and Natural Science Foundation of Henan Province Grant 112300410054.

The second author was supported in part by National Natural Science Foundation of China Grant 10901047

Communicated by:
Walter Craig

Article copyright:
© Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.