Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Star configuration points and generic plane curves

Authors: Enrico Carlini and Adam Van Tuyl
Journal: Proc. Amer. Math. Soc. 139 (2011), 4181-4192
MSC (2010): Primary 14M05, 14H50
Published electronically: July 7, 2011
MathSciNet review: 2823063
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \ell_1,\ldots,\ell_l$ be $ l$ lines in $ \mathbb{P}^2$ such that no three lines meet in a point. Let $ \mathbb{X}(l)$ be the set of points $ \{\ell_i \cap \ell_j ~\vert~ 1 \leq i < j \leq l\} \subseteq \mathbb{P}^2$. We call $ \mathbb{X}(l)$ a star configuration. We describe all pairs $ (d,l)$ such that the generic degree $ d$ curve in $ \mathbb{P}^2$ contains an $ \mathbb{X}(l)$. Our proof strategy uses both a theoretical and an explicit algorithmic approach. We also describe how one may extend our algorithmic approach to similar problems.

References [Enhancements On Off] (What's this?)

  • 1. C. Bocci, B. Harbourne, Comparing powers and symbolic powers of ideals. J. Algebraic Geom. 19 (2010), 399-417. MR 2629595 (2011d:13021)
  • 2. E. Carlini, Codimension one decompositions and Chow varieties. In Projective varieties with unexpected properties, 67-79, Walter de Gruyter GmbH & Co. KG, Berlin, 2005. MR 2202247 (2007f:14056)
  • 3. E. Carlini, L. Chiantini, A.V. Geramita, Complete intersections on general hypersurfaces. Mich. Math. J. 57 (2008), 121-136. MR 2492444 (2010b:14098)
  • 4. E. Carlini, L. Chiantini, A.V. Geramita, Complete intersection points on general surfaces in $ \mathbb{P}^3$. Michigan Math. J. 59 (2010), 269-281. MR 2677620
  • 5. CoCoATeam, CoCoA: a system for doing computations in commutative algebra. Available at
  • 6. S. Cooper, B. Harbourne, Z. Teitler, Combinatorial bounds on Hilbert functions of fat points in the plane. J. Pure Appl. Algebra 215 (2011), 2165-2179.
  • 7. A.V. Geramita, B. Harbourne, J. Migliore. Personal communication.
  • 8. A.V. Geramita, J. Migliore, L. Sabourin. The first infinitesimal neighborhood of a linear configuration of points in $ \mathbb{P}^2$. J. Algebra 298 (2006), no. 2, 563-611. MR 2217628 (2007a:13016)
  • 9. A. Grothendieck.
    Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2).
    Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 4. Société Mathématique de France, Paris, 2005.
    Séminaire de Géométrie Algébrique du Bois Marie, 1962, Augmenté d'un exposé de Michèle Raynaud. [With an exposé by Michèle Raynaud], with a preface and edited by Yves Laszlo, revised reprint of the 1968 French original. MR 2171939 (2006f:14004)
  • 10. J. Harris. Algebraic geometry, A first course. Grad. Texts in Math., 133, Springer-Verlag, New York, 1992. MR 1182558 (93j:14001)
  • 11. S. Lefschetz.
    On certain numerical invariants of algebraic varieties with application to abelian varieties. Trans. Amer. Math. Soc. 22 (1921), no. 3, 327-406. MR 1501178
  • 12. J. Lüroth, Einige Eigenschaften einer gewissen Gattung von Curven vierter Ordnung. Math. Ann. 1 (1869), no. 1, 37-53. MR 1509610
  • 13. F. Morley, On the Lüroth quartic curve. Amer. J. Math. 41 (1919), no. 4, 279-282. MR 1506393
  • 14. G. Ottaviani, E. Sernesi, On the hypersurface of Luroth quartics. Michigan Math. J. 59 (2010), 365-394. MR 2677627
  • 15. F. Severi. Una proprieta' delle forme algebriche prive di punti multipli. Rend. Accad. Lincei, II 15 (1906) 691-696.
  • 16. E. Szabó. Complete intersection subvarieties of general hypersurfaces. Pacific J. Math. 175 (1996), no. 1, 271-294. MR 1419484 (98g:14061)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14M05, 14H50

Retrieve articles in all journals with MSC (2010): 14M05, 14H50

Additional Information

Enrico Carlini
Affiliation: Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy

Adam Van Tuyl
Affiliation: Department of Mathematical Sciences, Lakehead University, Thunder Bay, Ontario, Canada, P7B 5E1

Keywords: Star configurations, generic plane curves
Received by editor(s): October 13, 2010
Published electronically: July 7, 2011
Communicated by: Irena Peeva
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society