Second eigenvalue of a Jacobi operator of hypersurfaces with constant scalar curvature

Authors:
Haizhong Li and Xianfeng Wang

Journal:
Proc. Amer. Math. Soc. **140** (2012), 291-307

MSC (2010):
Primary 53C42; Secondary 58J50

DOI:
https://doi.org/10.1090/S0002-9939-2011-10892-X

Published electronically:
May 6, 2011

MathSciNet review:
2833541

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be an -dimensional compact hypersurface with constant scalar curvature , in a unit sphere , and let be the Jacobi operator of . In 2004, L. J. Alías, A. Brasil and L. A. M. Sousa studied the first eigenvalue of of the hypersurface with constant scalar curvature in . In 2008, Q.-M. Cheng studied the first eigenvalue of the Jacobi operator of the hypersurface with constant scalar curvature , in . In this paper, we study the second eigenvalue of the Jacobi operator of and give an optimal upper bound for the second eigenvalue of .

**1.**H. Alencar, M. do Carmo and A. G. Colares,*Stable hypersurfaces with constant scalar curvature.*Math. Z.,**213**(1993), 117-131. MR**1217674 (94d:53080)****2.**L. J. Alías, A. Brasil and L. A. M. Sousa,*A characterization of Clifford tori with constant scalar curvature one by the first stability eigenvalue.*Bull. Braz. Math. Soc.,**35**(2004), 165-175. MR**2081021 (2005e:53089)****3.**J. L. Barbosa, M. do Carmo and M. Eschenburg,*Stability of hypersurfaces with constant mean curvature in Riemannian manifolds.*Math. Z.,**197**(1988), 123-138. MR**917854 (88m:53109)****4.**L. Cao and H. Li,*r-Minimal submanifolds in space forms.*Ann. Global Anal. Geom.,**32**(2007), 311-341. MR**2346221 (2008i:53076)****5.**Q.-M. Cheng,*Hypersurfaces in a unit sphere with consatant scalar curvature.*J. London Math. Soc.,**64**(2001), 755-768. MR**1865560 (2002k:53116)****6.**Q.-M. Cheng,*Compact hypersurfaces in a unit sphere with infinite fundamental group.*Pacific J. Math.,**212**(2003), 49-56. MR**2016567 (2004g:53059)****7.**Q.-M. Cheng,*First eigenvalue of a Jacobi operator of hypersurfaces with constant scalar curvature.*Proc. Amer. Math. Soc.,**136**(2008), 3309-3318. MR**2407097 (2009a:53099)****8.**S. Y. Cheng and S.-T. Yau,*Hypersurfaces with constant scalar curvature.*Math. Ann.,**225**(1977), 195-204. MR**0431043 (55:4045)****9.**S. S. Chern,*Minimal submanifolds in a Riemannian manifold.*Dept. of Math. Tech. Report 19 (New Series), Univ. of Kansas, Lawrence, KS, 1968. MR**0248648 (40:1899)****10.**G. Hardy, J. E. Littlewood and G. Pólya,*Inequalities.*2nd Edition, Cambridge Univ. Press, 1989. MR**0046395 (13:727e)****11.**J. Hounie and M. L. Leite,*Two-ended hypersurfaces with zero scalar curvature.*Indiana Univ. Math. J.,**48**(1999), 867-882. MR**1736975 (2001b:53077)****12.**H. Li,*Hypersurfaces with constant scalar curvature in space forms.*Math. Ann.,**305**(1996), 665-672. MR**1399710 (97i:53073)****13.**P. Li and S.-T. Yau,*A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces.*Invent. Math.,**69**(1982), 269-291. MR**674407 (84f:53049)****14.**S. Montiel and A. Ros,*Minimal immersions of surfaces by the first eigenfunctions and conformal area.*Invent. Math.,**83**(1986), 153-166. MR**813585 (87d:53109)****15.**K. Nomizu and B. Smyth,*On the Gauss mapping for hypersurfaces of constant mean curvature in the sphere.*Comment. Math. Helv.,**44**(1969), 484-490. MR**0257939 (41:2588)****16.**O. Perdomo,*On the average of the scalar curvature of minimal hypersurface of spheres with low stability index.*Illinois J. Math.,**48**(2004), 559-565. MR**2085426 (2006a:53076)****17.**R. C. Reilly,*Variational properties of functions of the mean curvatures for hypersurfaces in space forms.*J. Diff. Geom.,**8**(1973), 465-477. MR**0341351 (49:6102)****18.**H. Rosenberg,*Hypersurfaces of constant curvatures in space forms.*Bull. Sci. Math.,**117**(1993), 211-239. MR**1216008 (94b:53097)****19.**J. Simons,*Minimal varieties in Riemannian manifolds.*Ann. of Math. (2),**88**(1968), 62-105. MR**0233295 (38:1617)****20.**A. El Soufi and S. Ilias,*Second eigenvalue of Schrödinger operators and mean curvature.*Commun. Math. Phys.,**208**(2000), 761-770. MR**1736334 (2001g:58050)****21.**F. Urbano,*Minimal surfaces with low index in the three-dimensional sphere.*Proc. Amer. Math. Soc.,**108**(1990), 989-992. MR**1007516 (90h:53073)****22.**C. Wu,*New characterization of the Clifford tori and the Veronese surface.*Arch. Math. (Basel),**61**(1993), 277-284. MR**1231163 (94h:53084)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
53C42,
58J50

Retrieve articles in all journals with MSC (2010): 53C42, 58J50

Additional Information

**Haizhong Li**

Affiliation:
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China

Email:
hli@math.tsinghua.edu.cn

**Xianfeng Wang**

Affiliation:
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China

Email:
xf-wang06@mails.tsinghua.edu.cn

DOI:
https://doi.org/10.1090/S0002-9939-2011-10892-X

Keywords:
Hypersurface with constant scalar curvature,
second eigenvalue,
Jacobi operator,
mean curvature,
principal curvature

Received by editor(s):
August 23, 2010

Received by editor(s) in revised form:
October 31, 2010

Published electronically:
May 6, 2011

Additional Notes:
The first author was supported in part by NSFC Grant #10971110 and Tsinghua University–K.U. Leuven Bilateral Scientific Cooperation Fund.

The second author was supported in part by NSFC Grant #10701007 and Tsinghua University–K.U. Leuven Bilateral Scientific Cooperation Fund.

Communicated by:
Chuu-Lian Terng

Article copyright:
© Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.