Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Infinite sequences of mutually non-conjugate surface braids representing same surface-links


Author: Masahide Iwakiri
Journal: Proc. Amer. Math. Soc. 140 (2012), 357-366
MSC (2010): Primary 57Q45
DOI: https://doi.org/10.1090/S0002-9939-2011-10893-1
Published electronically: May 25, 2011
MathSciNet review: 2833546
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give an infinite sequence of mutually non-conjugate surface braids with same degree representing the trivial surface-link with at least two components and a pair of non-conjugate surface braids with same degree representing a spun $ (2,t)$-torus knot for $ t\geq 3$. To give these examples, we introduce new invariants of conjugacy classes of surface braids via colorings by Alexander quandles or core quandles of groups.


References [Enhancements On Off] (What's this?)

  • 1. J. S. Carter and M. Saito, Braids and movies, J. Knot Theory Ramifications 5 (1996), 589-608. MR 1414089 (97j:57028)
  • 2. T. Fiedler, A small state sum for knots, Topology 32 (1993), 281-294. MR 1217069 (94c:57006)
  • 3. E. Fukunaga, An infinite sequence of conjugacy classes in the $ 4$-braid group representing a torus link of type $ (2,k)$, preprint.
  • 4. I. Hasegawa, A certain linear representation of the classical braid group and its application to surface braids, Math. Proc. Cambridge Philos. Soc. 141 (2006), 287-301. MR 2265876 (2008e:57017)
  • 5. F. Hosokawa and A. Kawauchi, Proposals for unknotted surfaces in four-spaces, Osaka J. Math. 16 (1979), 233-248. MR 527028 (81c:57018)
  • 6. M. Iwakiri, The lower bound of the w-indices of surface links via quandle cocycle invariants, Trans. Amer. Math. Soc. 362 (2010), 1189-1210. MR 2563726 (2010j:57033)
  • 7. S. Kamada, A characterization of groups of closed orientable surfaces in $ 4$-space, Topology 33 (1994), 113-122. MR 1259518 (95a:57002)
  • 8. S. Kamada, Alexander's and Markov's theorems in dimension four, Bull. Amer. Math. Soc. (N.S.) 31 (1994), 64-67. MR 1254074 (94j:57023)
  • 9. S. Kamada, An observation of surface braids via chart description, J. Knot Theory Ramifications 4 (1996), 517-529. MR 1406718 (97j:57009)
  • 10. S. Kamada, Braid and knot theory in dimension four, Math. Surveys Monogr. 95, Amer. Math. Soc., 2002. MR 1900979 (2003d:57050)
  • 11. H. R. Morton, An irreducible $ 4$-string braid with unknotted closure, Math. Proc. Cambridge Philos. Soc. 93 (1983), 259-261. MR 691995 (84m:57006)
  • 12. R. Shinjo, An infinite sequence of non-conjugate $ 4$-braids representing the same knot of braid index $ 4$, Intelligence of low dimensional topology 2006, 293-297, Ser. Knots Everything, 40, World Sci. Publ., 2007. MR 2371738 (2008m:57033)
  • 13. R. Shinjo, Non-conjugate braids whose closures result in the same knot, J. Knot Theory Ramifications 19 (2010), 117-124. MR 2640995
  • 14. A. Stoimenow, Lie groups, Burau representation, and non-conjugate braids with the same closure link, preprint.
  • 15. A. Stoimenow, The density of Lawrence-Krammer and non-conjugate braid representations of links, preprint arXiv:0809.0033.
  • 16. K. Tanaka, A note on CI-moves, Intelligence of low dimensional topology 2006, 307-314, Ser. Knots Everything, 40, World Sci. Publ., 2007. MR 2371740 (2009a:57017)
  • 17. O. Ya. Viro, Lecture given at Osaka City University, September, 1990.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 57Q45

Retrieve articles in all journals with MSC (2010): 57Q45


Additional Information

Masahide Iwakiri
Affiliation: Graduate School of Science, Osaka City University, 3-3-138 Sugimoto Sumiyoshi-ku, Osaka 558-8585, Japan
Address at time of publication: Graduate School of Science and Engineering, Saga University, 1 Honjo-machi, Saga City, Saga, 840-8502, Japan
Email: iwakiri@sci.osaka-cu.ac.jp, iwakiri@ms.saga-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-2011-10893-1
Received by editor(s): July 16, 2010
Received by editor(s) in revised form: November 11, 2010, and November 12, 2010
Published electronically: May 25, 2011
Communicated by: Daniel Ruberman
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society