Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Recollements from generalized tilting


Author: Dong Yang
Journal: Proc. Amer. Math. Soc. 140 (2012), 83-91
MSC (2010): Primary 18E30, 16E45
DOI: https://doi.org/10.1090/S0002-9939-2011-10898-0
Published electronically: May 19, 2011
MathSciNet review: 2833519
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{A}$ be a small dg category over a field $ k$ and let $ \mathcal{U}$ be a small full subcategory of the derived category $ \mathcal{D}\mathcal{A}$ which generates all free dg $ \mathcal{A}$-modules. Let $ (\mathcal{B},X)$ be a standard lift of $ \mathcal{U}$. We show that there is a recollement such that its middle term is $ \mathcal{D}\mathcal{B}$, its right term is $ \mathcal{D}\mathcal{A}$, and the three functors on its right side are constructed from $ X$. This applies to the pair $ (A,T)$, where $ A$ is a $ k$-algebra and $ T$ is a good $ n$-tilting module, and we obtain a result of Bazzoni-Mantese-Tonolo. This also applies to the pair $ (\mathcal{A}, \mathcal{U})$, where $ \mathcal{A}$ is an augmented dg category and $ \mathcal{U}$ is the category of `simple' modules; e.g., $ \mathcal{A}$ is a finite-dimensional algebra or the Kontsevich-Soibelman $ A_\infty$-category associated to a quiver with potential.


References [Enhancements On Off] (What's this?)

  • 1. Lidia Angeleri Hügel, Steffen Koenig and Qunhua Liu, Recollements and tilting objects, J. Pure Appl. Algebra 215 (2011), no. 4, 420-438.
  • 2. Silvana Bazzoni, Equivalences induced by infinitely generated tilting modules, Proc. Amer. Math. Soc. 138 (2010), no. 2, 533-544. MR 2557170 (2011a:16012)
  • 3. Silvana Bazzoni, Francesca Mantese and Alberto Tonolo, Derived equivalence induced by $ n$-tilting modules, arXiv:0905.3696, to appear in Proc. Amer. Math. Soc.
  • 4. Alexander A. Beilinson, Joseph Bernstein and Pierre Deligne, Analyse et topologie sur les espaces singuliers, Astérisque, vol. 100, Soc. Math. France, 1982 (French). MR 751966 (86g:32015)
  • 5. Aleksei I. Bondal and Mikhail M. Kapranov, Enhanced triangulated categories, Mat. Sb. 181 (1990), no. 5, 669-683; translation in Math. USSR-Sb. 70 (1991), no. 1, 93-107. MR 1055981 (91g:18010)
  • 6. Hongxing Chen and Changchang Xi, Good tilting modules and recollements of derived module categories, arXiv:1012.2176.
  • 7. Victor Ginzburg, Calabi-Yau algebras, arXiv:math/0612139v3 [math.AG].
  • 8. Dieter Happel, Partial tilting modules and recollement, Proceedings of the International Conference on Algebra, Part 2 (Novosibirsk, 1989), 345-361, Contemp. Math. 131, Part 2, Amer. Math. Soc., Providence, RI, 1992. MR 1175843 (93k:16011)
  • 9. Peter Jørgensen, Recollement for Differential Graded Algebras, J. Algebra 299 (2006), 589-601. MR 2228328 (2007b:16023)
  • 10. Bernhard Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 1, 63-102. MR 1258406 (95e:18010)
  • 11. Bernhard Keller and Dong Yang, Derived equivalences from mutations of quivers with potential, Adv. Math. 226 (2011), no. 3, 2118-2168.
  • 12. Steffen Koenig, Tilting complexes, perpendicular categories and recollements of derived categories of rings, J. Pure Appl. Algebra 73 (1991), 211-232. MR 1124785 (92k:18009)
  • 13. Maxim Kontsevich and Yan Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435.
  • 14. Henning Krause, The stable derived category of a Noetherian scheme, Compos. Math. 141 (2005), no. 5, 1128-1162. MR 2157133 (2006e:18019)
  • 15. Jun-Ichi Miyachi, Recollements and tilting complexes, J. Pure Appl. Algebra 183 (2003), 245-273. MR 1992048 (2004g:16007)
  • 16. Amnon Neeman, The connection between the K-theory localisation theorem of Thomason, Trobaugh and Yao, and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. École Normale Supérieure 25 (1992), 547-566. MR 1191736 (93k:18015)
  • 17. Pedro Nicolás and Manuel Saorín, Parametrizing recollement data for triangulated categories, J. Algebra 322 (2009), no. 4, 1220-1250. MR 2537682 (2010g:18015)
  • 18. Jeremy Rickard, Morita theory for derived categories, J. London Math. Soc. 39 (1989), 436-456. MR 1002456 (91b:18012)
  • 19. Jeremy Rickard, Derived categories and stable equivalence, J. Pure and Appl. Algebra 61 (1989), 303-317. MR 1027750 (91a:16004)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 18E30, 16E45

Retrieve articles in all journals with MSC (2010): 18E30, 16E45


Additional Information

Dong Yang
Affiliation: Max-Planck-Institut für Mathematik in Bonn, Vivatsgasse 7, 53111 Bonn, Germany
Address at time of publication: HIM, Hausdorff Research Institute for Mathematics, Poppelsdorff Allee 82, D-53115, Bonn, Germany
Email: yangdong98@mails.thu.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-2011-10898-0
Received by editor(s): June 21, 2010
Received by editor(s) in revised form: October 11, 2010, and November 8, 2010
Published electronically: May 19, 2011
Communicated by: Birge Huisgen-Zimmermann
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society