Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 


On harmonic functions and the Schwarz lemma

Authors: David Kalaj and Matti Vuorinen
Journal: Proc. Amer. Math. Soc. 140 (2012), 161-165
MSC (2010): Primary 31C05; Secondary 30A10
Published electronically: May 2, 2011
MathSciNet review: 2833528
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the Schwarz lemma for harmonic functions and prove sharp versions for the cases of real harmonic functions and the norm of harmonic mappings.

References [Enhancements On Off] (What's this?)

  • 1. Sheldon Axler, Paul Bourdon, and Wade Ramey, Harmonic function theory, Graduate Texts in Mathematics, vol. 137, Springer-Verlag, New York, 1992. MR 1184139
  • 2. Peter Duren, Harmonic mappings in the plane, Cambridge Tracts in Mathematics, vol. 156, Cambridge University Press, Cambridge, 2004. MR 2048384
  • 3. Erhard Heinz, On one-to-one harmonic mappings, Pacific J. Math. 9 (1959), 101–105. MR 0104933
  • 4. D. Kalaj, Harmonic functions and harmonic quasiconformal mappings between convex domains, thesis, Beograd, 2002.
  • 5. Miljan Knežević and Miodrag Mateljević, On the quasi-isometries of harmonic quasiconformal mappings, J. Math. Anal. Appl. 334 (2007), no. 1, 404–413. MR 2332565, 10.1016/j.jmaa.2006.12.069
  • 6. M. Pavlović, A Schwarz lemma for the modulus of a vector-valued analytic function, Proc. Amer. Math. Soc. 139 (2011), 969-973.
  • 7. Miroslav Pavlović, Introduction to function spaces on the disk, Posebna Izdanja [Special Editions], vol. 20, Matematički Institut SANU, Belgrade, 2004. MR 2109650
  • 8. Tom Yau-Heng Wan, Constant mean curvature surface, harmonic maps, and universal Teichmüller space, J. Differential Geom. 35 (1992), no. 3, 643–657. MR 1163452

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 31C05, 30A10

Retrieve articles in all journals with MSC (2010): 31C05, 30A10

Additional Information

David Kalaj
Affiliation: Faculty of Natural Sciences and Mathematics, University of Montenegro, Cetinjski put b.b., 81000 Podgorica, Montenegro

Matti Vuorinen
Affiliation: Department of Mathematics, University of Turku, 20014 Turku, Finland

Keywords: Harmonic functions, hyperbolic metric, unit disk
Received by editor(s): October 23, 2010
Published electronically: May 2, 2011
Communicated by: Richard Rochberg
Article copyright: © Copyright 2011 American Mathematical Society