Lipschitz class, narrow class, and counting lattice points
Author:
Martin Widmer
Journal:
Proc. Amer. Math. Soc. 140 (2012), 677689
MSC (2010):
Primary 52A30, 11H06; Secondary 11P21, 11D45
Published electronically:
June 9, 2011
MathSciNet review:
2846337
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A wellknown principle says that the number of lattice points in a bounded subset of Euclidean space is about the ratio of the volume and the lattice determinant, subject to some relatively mild conditions on . In the literature one finds two different types of such conditions: one asserts the Lipschitz parameterizability of the boundary , and the other one is based on intersection properties of lines with and its projections to linear subspaces. We compare these conditions and address a question, which we answer in some special cases. Then we give some simple upper bounds on the number of lattice points in a convex set, and finally, we apply these results to obtain estimates for the number of rational points of bounded height on certain projective varieties.
 1.
Keith
Ball, Ellipsoids of maximal volume in convex bodies, Geom.
Dedicata 41 (1992), no. 2, 241–250. MR 1153987
(93k:52006), http://dx.doi.org/10.1007/BF00182424
 2.
H. F. Blichfeldt, The April meeting of the San Francisco section of the AMS, The American Math. Monthly 28, no. 6/7 (1920/21), 285292.
 3.
Martin
R. Bridson and André
Haefliger, Metric spaces of nonpositive curvature,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], vol. 319, SpringerVerlag, Berlin, 1999. MR 1744486
(2000k:53038)
 4.
H.
Davenport, On a principle of Lipschitz, J. London Math. Soc.
26 (1951), 179–183. MR 0043821
(13,323d)
 5.
X. Gao, On Northcott's Theorem, Ph.D. Thesis, University of Colorado (1995).
 6.
Martin
Henk and Jörg
M. Wills, A Blichfeldttype inequality for the surface area,
Monatsh. Math. 154 (2008), no. 2, 135–144. MR 2419059
(2009c:52026), http://dx.doi.org/10.1007/s0060500805308
 7.
Fritz
John, Extremum problems with inequalities as subsidiary
conditions, Studies and Essays Presented to R. Courant on his 60th
Birthday, January 8, 1948, Interscience Publishers, Inc., New York, N. Y.,
1948, pp. 187–204. MR 0030135
(10,719b)
 8.
Wilhelm
Maak, Schnittpunktanzahl rektifizierbarer und nichtrektifizierbarer
Kurven, Math. Ann. 118 (1942), 299–304
(German). MR
0008463 (5,10d)
 9.
David
Masser and Jeffrey
D. Vaaler, Counting algebraic numbers with large
height. II, Trans. Amer. Math. Soc.
359 (2007), no. 1,
427–445 (electronic). MR 2247898
(2008m:11208), http://dx.doi.org/10.1090/S0002994706041158
 10.
J.
Pila, Density of integral and rational points on varieties,
Astérisque 228 (1995), 4, 183–187. Columbia
University Number Theory Seminar (New York, 1992). MR 1330933
(96b:11043)
 11.
Luis
A. Santaló, Integral geometry and geometric
probability, AddisonWesley Publishing Co., Reading,
Mass.LondonAmsterdam, 1976. With a foreword by Mark Kac; Encyclopedia of
Mathematics and its Applications, Vol. 1. MR 0433364
(55 #6340)
 12.
Wolfgang
M. Schmidt, Northcott’s theorem on heights. II. The quadratic
case, Acta Arith. 70 (1995), no. 4,
343–375. MR 1330740
(96a:11059)
 13.
Martin
Widmer, Counting points of fixed degree and bounded height,
Acta Arith. 140 (2009), no. 2, 145–168. MR 2558450
(2010j:11109), http://dx.doi.org/10.4064/aa14024
 14.
Martin
Widmer, Counting points of fixed degree and bounded height on
linear varieties, J. Number Theory 130 (2010),
no. 8, 1763–1784. MR 2651154
(2011m:11140), http://dx.doi.org/10.1016/j.jnt.2010.03.001
 15.
Martin
Widmer, Counting primitive points of bounded
height, Trans. Amer. Math. Soc.
362 (2010), no. 9,
4793–4829. MR 2645051
(2011i:11099), http://dx.doi.org/10.1090/S0002994710051731
 16.
, On number fields with nontrivial subfields, to appear in Int. J. Number Theory (2010).
 17.
I.
M. Jaglom and V.
G. Boltjanskiĭ, Convex figures, Translated by Paul J.
Kelly and Lewis F. Walton, Holt, Rinehart and Winston, New York, 1960. MR 0123962
(23 #A1283)
 1.
 K. Ball, Ellipsoids of maximal volume in convex bodies, Geom. Dedicata 41 (1992), no. 2, 241250. MR 1153987 (93k:52006)
 2.
 H. F. Blichfeldt, The April meeting of the San Francisco section of the AMS, The American Math. Monthly 28, no. 6/7 (1920/21), 285292.
 3.
 M. R. Bridson and A. Haefliger, Metric Spaces of NonPositive Curvature, Springer, 1999. MR 1744486 (2000k:53038)
 4.
 H. Davenport, On a principle of Lipschitz, J. London Math. Soc. 26 (1951), 179183. MR 0043821 (13:323d)
 5.
 X. Gao, On Northcott's Theorem, Ph.D. Thesis, University of Colorado (1995).
 6.
 M. Henk and J. M. Wills, A Blichfeldttype inequality for the surface area, Monatsh. Math. 154 (2008), 135144. MR 2419059 (2009c:52026)
 7.
 F. John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays Presented to R. Courant on His 60th Birthday, Interscience Publishers, Inc., New York, NY, 1948, pp. 187204. MR 0030135 (10:719b)
 8.
 W. Maak, Schnittpunktanzahl rektifizierbarer und nichtrektifizierbarer Kurven, Math. Ann. 118 (1942), 299304. MR 0008463 (5:10d)
 9.
 D. W. Masser and J. D. Vaaler, Counting algebraic numbers with large height. II, Trans. Amer. Math. Soc. 359 (2007), 427445. MR 2247898 (2008m:11208)
 10.
 J. Pila, Density of integral and rational points on varieties, Astérisque 228 (1995), 183187. MR 1330933 (96b:11043)
 11.
 L. A. Santaló, Integral Geometry and Geometric Probability, Addison Wesley, 1976. MR 0433364 (55:6340)
 12.
 W. M. Schmidt, Northcott's theorem on heights. II. The quadratic case, Acta Arith. 70 (1995), 343375. MR 1330740 (96a:11059)
 13.
 M. Widmer, Counting points of fixed degree and bounded height, Acta Arith. 140, no. 2 (2009), 145168. MR 2558450 (2010j:11109)
 14.
 , Counting points of fixed degree and bounded height on linear varieties, J. Number Theory 130 (2010), 17631784. MR 2651154
 15.
 , Counting primitive points of bounded height, Trans. Amer. Math. Soc. 362 (2010), 47934829. MR 2645051
 16.
 , On number fields with nontrivial subfields, to appear in Int. J. Number Theory (2010).
 17.
 I. M. Yaglom and V. G. Boltjanskiĭ, Convex figures (translated by P. J. Kelly and L. F. Walton), Holt, Rinehart and Winston, New York, 1960. MR 0123962 (23:A1283)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2010):
52A30,
11H06,
11P21,
11D45
Retrieve articles in all journals
with MSC (2010):
52A30,
11H06,
11P21,
11D45
Additional Information
Martin Widmer
Affiliation:
Department of Mathematics, Technische Universität Graz, Steyrergasse 30/II, 8010 Graz, Austria
Email:
widmer@math.tugraz.at
DOI:
http://dx.doi.org/10.1090/S000299392011109262
PII:
S 00029939(2011)109262
Keywords:
Lattice points,
counting,
Lipschitz class,
narrow class,
height
Received by editor(s):
August 3, 2010
Received by editor(s) in revised form:
November 23, 2010
Published electronically:
June 9, 2011
Communicated by:
Matthew A. Papanikolas
Article copyright:
© Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
