Global sections of structure sheaves of Keigher rings
Author:
Dmitry Trushin
Journal:
Proc. Amer. Math. Soc. 140 (2012), 505511
MSC (2000):
Primary 12H05
Published electronically:
June 22, 2011
MathSciNet review:
2846318
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Answering a question of J. Kovacic, we show that for any Keigher ring, its differential spectrum coincides with the differential spectrum of the ring of global sections of the structure sheaf. In particular, we obtain the answer for Ritt algebras, that is, differential rings containing the rational numbers.
 1.
M.
F. Atiyah and I.
G. Macdonald, Introduction to commutative algebra,
AddisonWesley Publishing Co., Reading, Mass.LondonDon Mills, Ont., 1969.
MR
0242802 (39 #4129)
 2.
Alexandru
Buium, Ritt schemes and torsion theory, Pacific J. Math.
98 (1982), no. 2, 281–293. MR 650009
(84j:13028)
 3.
Alexandru
Buium, Differential function fields and moduli of algebraic
varieties, Lecture Notes in Mathematics, vol. 1226,
SpringerVerlag, Berlin, 1986. MR 874111
(88e:14010)
 4.
Giuseppa
Carrà, On the differential spectrum of a differential
ring, Matematiche (Catania) 33 (1978), no. 1,
1–17 (1980) (Italian). MR 612425
(82h:13018)
 5.
Giuseppa
Carrà Ferro, The ring of global sections of the structure
sheaf on the differential spectrum, Rev. Roumaine Math. Pures Appl.
30 (1985), no. 10, 809–814. MR 826241
(87j:13036)
 6.
G. Carrà Ferro. Kolchin schemes. Journal Pure and Applied Mathematics 94 (1972), pp. 891954.
 7.
William
F. Keigher, Adjunctions and comonads in differential algebra,
Pacific J. Math. 59 (1975), no. 1, 99–112. MR 0392957
(52 #13770)
 8.
William
F. Keigher, Prime differential ideals in differential rings,
Contributions to algebra (collection of papers dedicated to Ellis Kolchin),
Academic Press, New York, 1977, pp. 239–249. MR 0485806
(58 #5610)
 9.
William
F. Keigher, On the structure presheaf of a differential ring,
J. Pure Appl. Algebra 27 (1983), no. 2,
163–172. MR
687748 (84g:13040), http://dx.doi.org/10.1016/00224049(83)900129
 10.
William
F. Keigher, On the quasiaffine scheme of a differential ring,
Adv. in Math. 42 (1981), no. 2, 143–153. MR 641423
(83c:12023), http://dx.doi.org/10.1016/00018708(81)900360
 11.
William
F. Keigher, Differential schemes and premodels of differential
fields, J. Algebra 79 (1982), no. 1,
37–50. MR
679968 (84f:13022), http://dx.doi.org/10.1016/00218693(82)903143
 12.
Jerald
J. Kovacic, Differential schemes, Differential algebra and
related topics (Newark, NJ, 2000) World Sci. Publ., River Edge, NJ, 2002,
pp. 71–94. MR 1921695
(2003i:12010), http://dx.doi.org/10.1142/9789812778437_0002
 13.
Jerald
J. Kovacic, Global sections of diffspec, J. Pure Appl. Algebra
171 (2002), no. 23, 265–288. MR 1904483
(2003c:12008), http://dx.doi.org/10.1016/S00224049(01)001189
 1.
 M. F. Atiyah, I. G. Macdonald. Introduction to commutative algebra. AddisonWesley, 1969. MR 0242802 (39:4129)
 2.
 A. Buium. Ritt schemes and torsion theory. Pacific Journal of Mathematics 98 (1982), pp. 281293. MR 650009 (84j:13028)
 3.
 A. Buium. Differential function fields and moduli of algebraic varieties. Lecture Notes in Mathematics 1226, SpringerVerlag, BerlinNew York, 1986. MR 874111 (88e:14010)
 4.
 G. Carrà Ferro. Sullo spettro differenziale di un anello differenziale. Le Mathematiche (Catania) 33 (1978), pp. 117. MR 612425 (82h:13018)
 5.
 G. Carrà Ferro. The ring of global sections of the structure sheaf on the differential spectrum. Rev. Roumaine Math. Pures Appl. 30 (1985), pp. 809814. MR 826241 (87j:13036)
 6.
 G. Carrà Ferro. Kolchin schemes. Journal Pure and Applied Mathematics 94 (1972), pp. 891954.
 7.
 W. Keigher. Adjunctions and comonads in differential algebra, Pacific Journal of Mathematics 59 (1975), pp. 99112. MR 0392957 (52:13770)
 8.
 W. Keigher. Prime differential ideals in differential rings. Contribution to Algebra: A collection of papers dedicated to Ellis Kolchin (Bass, Cassidy, Kovacic, eds.), Academic Press, New York, 1977, pp. 239249. MR 0485806 (58:5610)
 9.
 W. Keigher. On the structure presheaf of a differential ring. Journal of Pure and Applied Algebra 27 (1983), pp. 163172. MR 687748 (84g:13040)
 10.
 W. Keigher. On the quasiaffine scheme of a differential ring. Advances in Mathematics 42(2) (1981), pp. 143153. MR 641423 (83c:12023)
 11.
 W. Keigher. Differential schemes and premodels of differential fields. Journal of Algebra 79 (1982), pp. 3750. MR 679968 (84f:13022)
 12.
 J. J. Kovacic. Differential Schemes, Differential Algebra and Related Topics, Newark, NJ, 2000, pp. 7194. MR 1921695 (2003i:12010)
 13.
 J. J. Kovacic. Global sections of diffspec, Journal of Pure and Applied Algebra 171 (2002), pp. 265288. MR 1904483 (2003c:12008)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
12H05
Retrieve articles in all journals
with MSC (2000):
12H05
Additional Information
Dmitry Trushin
Affiliation:
Department of Mechanics and Mathematics, Moscow State University, Moscow, Russia 119991
Email:
trushindima@yandex.ru
DOI:
http://dx.doi.org/10.1090/S000299392011109328
PII:
S 00029939(2011)109328
Received by editor(s):
July 25, 2009
Received by editor(s) in revised form:
December 5, 2010
Published electronically:
June 22, 2011
Additional Notes:
The author was partially supported by NSF grants CCF0964875 and 0952591
Dedicated:
This paper is dedicated to Jerald J. Kovacic
Communicated by:
Bernd Ulrich
Article copyright:
© Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
