Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Non-vanishing of derivatives of $ GL(3) \times GL(2)$ $ L$-functions


Author: Qingfeng Sun
Journal: Proc. Amer. Math. Soc. 140 (2012), 449-463
MSC (2010): Primary 11F67, 11F12, 11F30
DOI: https://doi.org/10.1090/S0002-9939-2011-10947-X
Published electronically: June 14, 2011
MathSciNet review: 2846314
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f$ be a fixed self-dual Hecke-Maass cusp form for $ SL_3(\mathbb{Z})$ and let $ \mathcal{B}_k$ be an orthogonal basis of holomorphic cusp forms of weight $ k \equiv 2(\mathrm{mod} 4)$ for $ SL_2(\mathbb{Z})$. We prove an asymptotic formula for the first moment of the first derivative of $ L\left(s,f\times g\right)$ at the central point $ s=1/2$, where $ g$ runs over $ \mathcal{B}_k$, $ K\leq k\leq 2K$, $ K$ large enough. This implies that for each $ K$ large enough there exists $ g\in \mathcal{B}_k$ with $ K\leq k\leq 2K$ such that $ L'(1/2,f\times g)\neq 0$.


References [Enhancements On Off] (What's this?)

  • [1] D. Bump, Automorphic Forms on $ GL(3,\mathbb{R})$, Lecture Notes in Mathematics 1083, Springer-Verlag, 1984. MR 765698 (86g:11028)
  • [2] D. Bump, S. Friedberg and J. Hoffstein, Nonvanishing theorems for $ L$-functions of modular forms and their derivatives, Invent. Math. 102 (1990), 543-618. MR 1074487 (92a:11058)
  • [3] D. Goldfeld, Automorphic forms and $ L$-functions for the group $ GL(n,\mathbb{R})$, Cambridge Studies in Advanced Mathematics 99, Cambridge Univ. Press, Cambridge, 2006. MR 2254662 (2008d:11046)
  • [4] D. Goldfeld and X. Li, Voronoi formulas on $ GL(n)$, Int. Math. Res. Not. (2006), Art. ID 86295, 25 pages. MR 2233713 (2007f:11052)
  • [5] A. Ivić, On the ternary additive divisor problem and the sixth moment of the zeta-function, Sieve methods, exponential sums, and their applications in number theory, London Math. Soc. Lecture Note Ser. 237, Cambridge Univ. Press, Cambridge, 1997, pp. 205-243. MR 1635762 (99k:11129)
  • [6] H. Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics 17, Amer. Math. Soc., Providence, RI, 1997. MR 1474964 (98e:11051)
  • [7] H. Iwaniec, W. Luo and P. Sarnak, Low lying zeros of families of $ L$-functions, Inst. Hautes Études Sci. Publ. Math. 91 (2000), 55-131. MR 1828743 (2002h:11081)
  • [8] H. Iwaniec and P. Sarnak, The non-vanishing of central values of automorphic $ L$-functions and Landau-Siegel zeros, Israel J. Math. 120 (2000), 155-177. MR 1815374 (2002b:11115)
  • [9] H. Jacquet and J.A. Shalika, A non-vanishing theorem for zeta functions of $ GL_n$, Invent. Math. 38 (1976), 1-16. MR 0432596 (55:5583)
  • [10] E. Kowalski, P. Michel and J. Vanderkam, Non-vanishing of high derivatives of automorphic $ L$-functions at the center of critical strip, J. Reine Angrew. Math. 526 (2000), 1-34. MR 1778299 (2001h:11068)
  • [11] E. Kowalski, P. Michel and J. Vanderkam, Rankin-Selberg $ L$-functions in the level aspect, Duke Math. J. 114 (2002), 123-191. MR 1915038 (2004c:11070)
  • [12] X. Li, The central value of the Rankin-Selberg $ L$-functions, GAFA 18 (2009), 1660-1695. MR 2481739 (2010a:11087)
  • [13] X. Li, Bounds for $ GL(3) \times GL(2)$ $ L$-functions and $ GL(3)$ $ L$-functions, Ann. of Math. (2) 173 (2011), no. 1, 301-336. MR 2753605
  • [14] S.C. Liu, Determination of $ GL(3)$ cusp forms by central values of $ GL(3) \times GL(2)$ $ L$-functions, Int. Math. Res. Not. IMRN 2010, no. 21, 4025-4041. MR 2738349
  • [15] W. Luo, Z. Rudnick and P. Sarnak, On the generalized Ramanujan conjecture for $ GL(n)$, Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996), Proc. Sympos. Pure Math. 66, Part 2, Amer. Math. Soc., Providence, RI, 1999, pp. 301-310. MR 1703764 (2000e:11072)
  • [16] S.D. Miller and W. Schmid, Automorphic distributions, $ L$-functions, and Voronoi summation for $ GL(3)$, Ann. of Math. (2) 164 (2006), 423-488. MR 2247965 (2007j:11065)
  • [17] M. Young, The second moment of $ GL(3) \times GL(2)$ L-functions, integrated, Adv. Math. 226 (2011), no. 4, 3550-3578. MR 2764898
  • [18] M. Young, The second moment of $ GL(3) \times GL(2)$ L-functions at special points, preprint, 2009, available at arXiv:0903.1579v1.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11F67, 11F12, 11F30

Retrieve articles in all journals with MSC (2010): 11F67, 11F12, 11F30


Additional Information

Qingfeng Sun
Affiliation: School of Mathematics and Statistics, Shandong University at Weihai, Weihai 264209, People’s Republic of China
Email: qfsun@mail.sdu.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-2011-10947-X
Keywords: Non-vanishing, $GL(3) ×GL(2)$ $L$-functions
Received by editor(s): April 2, 2010
Received by editor(s) in revised form: September 24, 2010, November 28, 2010, and November 29, 2010
Published electronically: June 14, 2011
Additional Notes: The author was supported by National Natural Science Foundation of China (grant No. 10971119).
Communicated by: Kathrin Bringmann
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society