Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The disk property of coverings of 1-convex surfaces


Authors: Mihnea Colţoiu and Cezar Joiţa
Journal: Proc. Amer. Math. Soc. 140 (2012), 575-580
MSC (2010): Primary 32F17, 32F10, 32E05, 32E10
DOI: https://doi.org/10.1090/S0002-9939-2011-11005-0
Published electronically: June 9, 2011
MathSciNet review: 2846325
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ be a 1-convex surface and $ p:\tilde X\to X$ an (unbranched) covering map. We prove that if $ \tilde X$ does not contain an infinite Nori string of rational curves, then $ \tilde X$ satisfies the discrete disk property.


References [Enhancements On Off] (What's this?)

  • 1. M. Colţoiu: Coverings of $ 1$-convex manifolds with $ 1$-dimensional exceptional set. Comment. Math. Helv. 68 (1993), no. 3, 469-479. MR 1236764 (95g:32023)
  • 2. M. Colţoiu; K. Diederich: On the coverings of proper families of 1-dimensional complex spaces. Michigan Math. J. 47 (2000), no. 2, 369-375. MR 1793631 (2002f:32022)
  • 3. M. Colţoiu; M. Tibăr: On the disk theorem. Math. Ann. 345 (2009), no. 1, 175-183. MR 2520056
  • 4. F. Docquier; H. Grauert: Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten. Math. Ann. 140 (1960) 94-123. MR 0148939 (26:6435)
  • 5. A. Dold: Lectures on algebraic topology. Springer-Verlag, Berlin, 1995. MR 1335915 (96c:55001)
  • 6. J. E. Fornaess: $ 2$-dimensional counterexamples to generalizations of the Levi problem. Math. Ann. 230 (1977), no. 2, 169-173. MR 0486625 (58:6344)
  • 7. K. Fritzsche; H. Grauert: From holomorphic functions to complex manifolds. Graduate Texts in Mathematics, 213. Springer-Verlag, New York, 2002. MR 1893803 (2003g:32001)
  • 8. T. Napier: Convexity properties of coverings of smooth projective varieties. Math. Ann. 28 (1990), no. 1-3, 433-479. MR 1032941 (91g:32015)
  • 9. R. Narasimhan: The Levi problem for complex spaces. II. Math. Ann. 146 (1962) 195-216. MR 0182747 (32:229)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 32F17, 32F10, 32E05, 32E10

Retrieve articles in all journals with MSC (2010): 32F17, 32F10, 32E05, 32E10


Additional Information

Mihnea Colţoiu
Affiliation: “Simion Stoilow” Institute of Mathematics of the Romanian Academy, P. O. Box 1-764, Bucharest 014700, Romania
Email: Mihnea.Coltoiu@imar.ro

Cezar Joiţa
Affiliation: “Simion Stoilow” Institute of Mathematics of the Romanian Academy, P. O. Box 1-764, Bucharest 014700, Romania
Email: Cezar.Joita@imar.ro

DOI: https://doi.org/10.1090/S0002-9939-2011-11005-0
Keywords: Stein spaces, 1-convex spaces, holomorphically convex spaces, discrete disk property
Received by editor(s): November 23, 2010
Published electronically: June 9, 2011
Additional Notes: Both authors were partially supported by CNCSIS Grant PN-II ID_1185, contract 472/2009.
Communicated by: Franc Forstneric
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society