Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Smooth Lie group actions are parametrized diffeological subgroups


Authors: Patrick Iglesias-Zemmour and Yael Karshon
Journal: Proc. Amer. Math. Soc. 140 (2012), 731-739
MSC (2010): Primary 58B25
DOI: https://doi.org/10.1090/S0002-9939-2011-11301-7
Published electronically: September 21, 2011
MathSciNet review: 2846342
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that every effective smooth action of a Lie group $ G$ on a manifold $ M$ is a diffeomorphism from $ G$ onto its image in $ \mathrm{Diff}(M)$, where the image is equipped with the subset diffeology of the functional diffeology.


References [Enhancements On Off] (What's this?)

  • [Don84]
    Paul Donato,
    Revêtement et groupe fondamental des espaces différentiels homogènes.
    Thèse de doctorat d'état, Université de Provence, Marseille, 1984.
  • [DonIgl85] Paul Donato and Patrick Iglesias.
    Exemple de groupes difféologiques: flots irrationnels sur le tore.
    Compte Rendu de l'Académie des Sciences, 301(4), Paris, 1985. MR 799609 (86j:58077)
  • [Igl85]
    Patrick Iglesias,
    Fibrés difféologiques et homotopie.
    Thèse de doctorat d'état, Université de Provence, Marseille, 1985.
  • [KobNom63]
    S. Kobayashi and K. Nomizu.
    Foundations of differential geometry.
    Interscience Publishers, 1963. MR 0152974 (27:2945)
  • [KKP07]
    Y. Karshon, L. Kessler, and M. Pinsonnault,
    A compact symplectic four-manifold admits only finitely many inequivalent toric actions.
    J. Sympl. Geom. 5 (2007), no. 2, 139-166. MR 2377250 (2008m:53199)
  • [KrMi97]
    A. Kriegl and P. Michor,
    The convenient setting of global analysis.
    Amer. Math. Soc., Providence, RI, 1997. MR 1471480 (98i:58015)
  • [Omo74]
    Hideki Omori,
    Infinite Dimensional Lie Transformation Groups.
    Lecture Notes in Mathematics 427.
    Springer-Verlag, Berlin-New York, 1974. MR 0431262 (55:4263)
  • [PIZ05-10] Patrick Iglesias-Zemmour, Diffeology. Eprint, 2005-2010. http://math.huji. ac.il/$ \sim$piz/diffeology/

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 58B25

Retrieve articles in all journals with MSC (2010): 58B25


Additional Information

Patrick Iglesias-Zemmour
Affiliation: Laboratoire d’Analyse, Topologie et Probabilités, CNRS, Marseille, France – and – The Hebrew University of Jerusalem, Israel
Email: piz@math.huji.ac.il

Yael Karshon
Affiliation: Department of Mathematics, The University of Toronto, 40 St. George Street, Toronto, Ontario M5S 2E4, Canada
Email: karshon@math.toronto.edu

DOI: https://doi.org/10.1090/S0002-9939-2011-11301-7
Received by editor(s): November 30, 2010
Published electronically: September 21, 2011
Additional Notes: This research is partially supported by an NSERC Discovery Grant.
Communicated by: Chuu-Lian Terng
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society