Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Stability indices for constrained self-adjoint operators


Authors: Todd Kapitula and Keith Promislow
Journal: Proc. Amer. Math. Soc. 140 (2012), 865-880
MSC (2010): Primary 35P05, 47A53, 47A75
DOI: https://doi.org/10.1090/S0002-9939-2011-10943-2
Published electronically: July 5, 2011
MathSciNet review: 2869071
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A wide class of problems in the study of the spectral and orbital stability of dispersive waves in Hamiltonian systems can be reduced to understanding the so-called ``energy spectrum'', that is, the spectrum of the second variation of the Hamiltonian evaluated at the wave shape, which is constrained to act on a closed subspace of the underlying Hilbert space. We present a substantially simplified proof of the negative eigenvalue count for such constrained, self-adjoint operators, and extend the result to include an analysis of the location of the point spectra of the constrained operator relative to that of the unconstrained operator. The results are used to provide a new proof of the Jones-Grillakis instability index for generalized eigenvalue problems of the form $ (\mathcal{R}-z\mathcal{S})u=0$ via a careful analysis of the associated Krein matrix.


References [Enhancements On Off] (What's this?)

  • 1. T. Benjamin,
    The stability of solitary waves,
    Proc. Roy. Soc. (London) Ser. A, 328, 153-183, 1972. MR 0338584 (49:3348)
  • 2. J. Bona, P. Souganidis, and W. Strauss,
    Stability and instability of solitary waves of Korteweg-de Vries type,
    Proc. R. Soc. London A, 411, 395-412, 1987. MR 897729 (88m:35128)
  • 3. J. Boussinesq,
    Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond,
    J. Math. Pures Appl., 17, 55-108, 1872.
  • 4. M. Chugunova and D. Pelinovsky,
    Count of eigenvalues in the generalized eigenvalue problem.
    J. Math. Phys., 51 (5), 052901, 2010. MR 2666968
  • 5. S. Cuccagna, D. Pelinovsky, and V. Vougalter,
    Spectra of positive and negative energies in the linearized NLS problem,
    Comm. Pure Appl. Math., 58, 1-29, 2005. MR 2094265 (2005k:35374)
  • 6. B. Deconinck and T. Kapitula,
    On the spectral and orbital stability of spatially periodic stationary solutions of generalized Korteweg-de Vries equations,
    preprint.
  • 7. M. Grillakis,
    Analysis of the linearization around a critical point of an infinite-dimensional Hamiltonian system,
    Comm. Pure Appl. Math., 43, 299-333, 1990. MR 1040143 (91d:58231)
  • 8. M. Grillakis,
    Linearized instability for nonlinear Schrödinger and Klein-Gordon equations,
    Comm. Pure Appl. Math., 46, 747-774, 1988. MR 948770 (89m:35192)
  • 9. M. Grillakis, J. Shatah, and W. Strauss,
    Stability theory of solitary waves in the presence of symmetry, I,
    Journal of Functional Analysis, 74, 160-197, 1987. MR 901236 (88g:35169)
  • 10. M. Grillakis, J. Shatah, and W. Strauss,
    Stability theory of solitary waves in the presence of symmetry, II,
    Journal of Functional Analysis, 94, 308-348, 1990. MR 1081647 (92a:35135)
  • 11. M. Haraguş and T. Kapitula,
    On the spectra of periodic waves for infinite-dimensional Hamiltonian systems,
    Physica D, 237 (20), 2649-2671, 2008. MR 2514124 (2010c:37167)
  • 12. C.K.R.T. Jones,
    Instability of standing waves for nonlinear Schrödinger-type equations,
    Ergod. Th. & Dynam. Sys., 8*, 119-138, 1988. MR 967634 (90d:35267)
  • 13. T. Kapitula,
    The Krein signature, Krein eigenvalues, and the Krein Oscillation Theorem,
    Indiana U. Math. J., 2010 (to appear).
  • 14. T. Kapitula, P. Kevrekidis, and B. Malomed,
    Stability of multiple pulses in discrete systems,
    Phys. Rev. E, 63 (036604), 2001.
  • 15. T. Kapitula, P. Kevrekidis, and B. Sandstede,
    Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems,
    Physica D, 195 (3-4), 263-282, 2004. MR 2089513 (2006k:37167)
  • 16. T. Kapitula, P. Kevrekidis, and B. Sandstede,
    Addendum: Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems,
    Physica D, 201 (1-2), 199-201, 2005. MR 2118638 (2006k:37168)
  • 17. T. Kato,
    Perturbation Theory for Linear Operators. Reprint of the 1980 edition.
    Springer-Verlag, Berlin, 1995. MR 1335452 (96a:47025)
  • 18. S. Lafortune and J. Lega,
    Spectral stability of local deformations of an elastic rod: Hamiltonian formalism,
    SIAM J. Math. Anal., 36 (6), 1726-1741, 2005. MR 2178219 (2006g:35188)
  • 19. Y. Li and K. Promislow,
    Structural stability of non-ground state traveling waves of coupled nonlinear Schrödinger equations,
    Physica D, 124 (1-3), 137-165, 1998. MR 1662538 (99j:35204)
  • 20. Y. Li and K. Promislow,
    The mechanism of the polarization mode instability in birefringent fiber optics,
    SIAM J. Math. Anal., 31 (6), 1351-1373, 2000. MR 1766556 (2001f:35375)
  • 21. D. Pelinovsky,
    Inertia law for spectral stability of solitary waves in coupled nonlinear Schrödinger equations,
    Proc. Royal Soc. London A, 461, 783-812, 2005. MR 2121936 (2006d:37142)
  • 22. M. Weinstein,
    Modulational stability of ground states of nonlinear Schrödinger equations,
    SIAM J. Math. Anal., 16 (3), 472-491, 1985. MR 783974 (86i:35130)
  • 23. A. Yew,
    Stability analysis of multipulses in nonlinearly coupled Schrödinger equations,
    Indiana U. Math. J., 49 (3), 1079-1124, 2000. MR 1803222 (2001m:35033)
  • 24. A. Yew, B. Sandstede, and C.K.R.T. Jones,
    Instability of multiple pulses in coupled nonlinear Schrödinger equations,
    Phys. Rev. E, 61 (5), 5886-5892, 2000. MR 1791733 (2001h:78041)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35P05, 47A53, 47A75

Retrieve articles in all journals with MSC (2010): 35P05, 47A53, 47A75


Additional Information

Todd Kapitula
Affiliation: Department of Mathematics and Statistics, Calvin College, Grand Rapids, Michigan 49546
Email: tmk5@calvin.edu

Keith Promislow
Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
Email: kpromisl@math.msu.edu

DOI: https://doi.org/10.1090/S0002-9939-2011-10943-2
Received by editor(s): September 21, 2010
Received by editor(s) in revised form: October 25, 2010, and December 10, 2010
Published electronically: July 5, 2011
Communicated by: Yingfei Yi
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society