ON THE MENGEL COVERING PROPERTY AND D-SPACES

DUŠAN REPÓVŠ AND LYUBOMYR ZDOMSKYY

(Communicated by Julia Knight)

Abstract. The main results of this paper are:

• It is consistent that every subparacompact space \(X \) of size \(\omega_1 \) is a D-space.
• If there exists a Michael space, then all productively Lindelöf spaces have the Menger property and, therefore, are D-spaces.
• Every locally D-space which admits a \(\sigma \)-locally finite cover by Lindelöf spaces is a D-space.

1. Introduction

A neighbourhood assignment for a topological space \(X \) is a function \(N \) from \(X \) to the topology of \(X \) such that \(x \in N(x) \) for all \(x \). A topological space \(X \) is said to be a D-space \([6]\) if for every neighbourhood assignment \(N \) for \(X \) there exists a closed and discrete subset \(A \subset X \) such that \(N(A) = \bigcup_{x \in A} N(x) = X \).

It is unknown whether paracompact (even Lindelöf) spaces are D-spaces. Our first result in this note answers \([7\), Problem 3.8\] in the affirmative and may be thought of as a very partial solution to this problem.

Our second result shows that the affirmative answer to \([19\), Problem 2.6\], which asks whether all productively Lindelöf spaces are D-spaces, is consistent. It is worth mentioning that our premises (i.e., the existence of a Michael space) are not known to be inconsistent.

Our third result is a common generalization of two theorems from \([10]\).

Most of our proofs use either the recent important result of Aurichi \([2]\) asserting that every topological space with the Menger property is a D-space or the ideas from its proof. We consider only regular topological spaces. For the definitions of small cardinals \(d \) and \(\text{cov}(\mathcal{M}) \) used in this paper we refer the reader to \([22]\).

1. Introduction

A neighbourhood assignment for a topological space \(X \) is a function \(N \) from \(X \) to the topology of \(X \) such that \(x \in N(x) \) for all \(x \). A topological space \(X \) is said to be a D-space \([6]\) if for every neighbourhood assignment \(N \) for \(X \) there exists a closed and discrete subset \(A \subset X \) such that \(N(A) = \bigcup_{x \in A} N(x) = X \).

It is unknown whether paracompact (even Lindelöf) spaces are D-spaces. Our first result in this note answers \([7\), Problem 3.8\] in the affirmative and may be thought of as a very partial solution to this problem.

Our second result shows that the affirmative answer to \([19\), Problem 2.6\], which asks whether all productively Lindelöf spaces are D-spaces, is consistent. It is worth mentioning that our premises (i.e., the existence of a Michael space) are not known to be inconsistent.

Our third result is a common generalization of two theorems from \([10]\).

Most of our proofs use either the recent important result of Aurichi \([2]\) asserting that every topological space with the Menger property is a D-space or the ideas from its proof. We consider only regular topological spaces. For the definitions of small cardinals \(d \) and \(\text{cov}(\mathcal{M}) \) used in this paper we refer the reader to \([22]\).

1. Introduction

A neighbourhood assignment for a topological space \(X \) is a function \(N \) from \(X \) to the topology of \(X \) such that \(x \in N(x) \) for all \(x \). A topological space \(X \) is said to be a D-space \([6]\) if for every neighbourhood assignment \(N \) for \(X \) there exists a closed and discrete subset \(A \subset X \) such that \(N(A) = \bigcup_{x \in A} N(x) = X \).

It is unknown whether paracompact (even Lindelöf) spaces are D-spaces. Our first result in this note answers \([7\), Problem 3.8\] in the affirmative and may be thought of as a very partial solution to this problem.

Our second result shows that the affirmative answer to \([19\), Problem 2.6\], which asks whether all productively Lindelöf spaces are D-spaces, is consistent. It is worth mentioning that our premises (i.e., the existence of a Michael space) are not known to be inconsistent.

Our third result is a common generalization of two theorems from \([10]\).

Most of our proofs use either the recent important result of Aurichi \([2]\) asserting that every topological space with the Menger property is a D-space or the ideas from its proof. We consider only regular topological spaces. For the definitions of small cardinals \(d \) and \(\text{cov}(\mathcal{M}) \) used in this paper we refer the reader to \([22]\).

1. Introduction

A neighbourhood assignment for a topological space \(X \) is a function \(N \) from \(X \) to the topology of \(X \) such that \(x \in N(x) \) for all \(x \). A topological space \(X \) is said to be a D-space \([6]\) if for every neighbourhood assignment \(N \) for \(X \) there exists a closed and discrete subset \(A \subset X \) such that \(N(A) = \bigcup_{x \in A} N(x) = X \).

It is unknown whether paracompact (even Lindelöf) spaces are D-spaces. Our first result in this note answers \([7\), Problem 3.8\] in the affirmative and may be thought of as a very partial solution to this problem.

Our second result shows that the affirmative answer to \([19\), Problem 2.6\], which asks whether all productively Lindelöf spaces are D-spaces, is consistent. It is worth mentioning that our premises (i.e., the existence of a Michael space) are not known to be inconsistent.

Our third result is a common generalization of two theorems from \([10]\).

Most of our proofs use either the recent important result of Aurichi \([2]\) asserting that every topological space with the Menger property is a D-space or the ideas from its proof. We consider only regular topological spaces. For the definitions of small cardinals \(d \) and \(\text{cov}(\mathcal{M}) \) used in this paper we refer the reader to \([22]\).
2. Subparacompact spaces of size \(\omega_1 \)

Following [4] we say that a topological space \(X \) has the property \(E^*_\omega \) if for every sequence \(\langle u_n : n \in \omega \rangle \) of countable open covers of \(X \) there exists a sequence \(\langle u_n : n \in \omega \rangle \) such that \(v_n \in \{ u_n \}^{<\omega} \) and \(\bigcup_{n \in \omega} v_n = X \). In the realm of Lindelöf spaces the property \(E^*_\omega \) is usually called the Menger property or \(\bigcup_{n \in \omega} (\mathcal{O}, \mathcal{O}) \); see [21] and references therein.

We say that a topological space \(X \) has property \(D_\omega \) if for every neighbourhood assignment \(N \) there exists a countable collection \(\{ A_n : n \in \omega \} \) of closed discrete subsets of \(X \) such that \(X = \bigcup_{n \in \omega} N(A_n) \). Observe that the property \(D_\omega \) is inherited by all closed subsets.

The following theorem is the main result of this section.

Theorem 2.1. Suppose that a topological space \(X \) has properties \(D_\omega \) and \(E^*_\omega \). Then \(X \) is a \(D \)-space.

The proof of Theorem 2.1 is analogous to the proof of [3, Proposition 2.6]. In particular, it uses the following game of length \(\omega \) on a topological space \(X \): On the \(n \)th move player \(I \) chooses a countable open cover \(u_n = \{ U_{n,k} : k \in \omega \} \) such that \(U_{n,k} \subset U_{n,k+1} \) for all \(k \in \omega \), and player \(II \) responds by choosing a natural number \(n_k \). Player \(II \) wins the game if \(\bigcup_{n \in \omega} U_{n,k_n} = X \). Otherwise, player \(I \) wins. We shall call this game an \(E^*_\omega \)-game. In the realm of Lindelöf spaces this game is known under the name Menger game. It is well known that a Lindelöf space \(X \) has the property \(E^*_\omega \) if and only if the first player has no winning strategy in the \(E^*_\omega \)-game on \(X \); see [8, [14]. The proof of [14] Theorem 13] also works without any change for non-Lindelöf spaces.

Proposition 2.2. A topological space \(X \) has the property \(E^*_\omega \) if and only if the first player has no winning strategy in the \(E^*_\omega \)-game.

A strategy of the first player in the \(E^*_\omega \)-game may be thought of as a map \(\Upsilon : \omega^{<\omega} \to \mathcal{O}(X) \), where \(\mathcal{O}(X) \) stands for the collection of all countable open covers of \(X \). The strategy \(\Upsilon \) is winning if \(X \neq \bigcup_{n \in \omega} U_{\omega}(n) \) for all \(z \in \omega^{\omega} \), where \(\Upsilon(s) = \{ U_{s,k} : k \in \omega \} \in \mathcal{O}(X) \).

We are in a position now to present the proof of Theorem 2.1.

Proof. We shall define a strategy \(\Upsilon : X \to \mathcal{O}(X) \) of the player \(I \) in the \(E^*_\omega \)-game on \(X \) as follows. Set \(F_0 = X \). The property \(D_\omega \) yields an increasing sequence \(\langle A_{\emptyset,k} : k \in \omega \rangle \) of closed discrete subsets of \(F_0 \) such that \(X = \bigcup_{k \in \omega} N(A_{\emptyset,k}) \). Set \(\Upsilon(\emptyset) = u_0 = \{ N(A_{\emptyset,k}) : k \in \omega \} \).

Suppose that for some \(m \in \omega \) and all \(s \in \omega^{\leq m} \) we have already defined a closed subset \(F_s \) of \(X \), an increasing sequence \(\langle A_{s,k} : k \in \omega \rangle \) of closed discrete subsets of \(F_s \), and a countable open cover \(\Upsilon(s) = u_s \) of \(X \) such that \(u_s = \{ (X \setminus F_s) \cup N(A_{s,k}) : k \in \omega \} \).

Fix \(s \in \omega^{m+1} \). Since \(X \) has the property \(D_\omega \), so does its closed subspace \(F_s := X \setminus \bigcup_{i < m+1} N(A_{s,i,s(i)}) \), and hence there exists an increasing sequence \(\langle A_{s,k} : k \in \omega \rangle \) of closed discrete subsets of \(F_s \) such that \(F_s \subset \bigcup_{k \in \omega} N(A_{s,k}) \). Set \(\Upsilon(s) = u_s = \{ (X \setminus F_s) \cup N(A_{s,k}) : k \in \omega \} \). This completes the definition of \(\Upsilon \).

Since \(X \) has the property \(E^*_\omega \), \(\Upsilon \) is not winning. Thus there exists \(z \in \omega^\omega \) such that \(X = \bigcup_{n \in \omega} (X \setminus F_z(n)) \cup N(A_{z|n,z(n)}) \). By the inductive construction, \(X \setminus F_0 = \emptyset \) and \(X \setminus F_z(n) = \bigcup_{i < n} N(A_{z|n,z(i)}) \) for all \(n > 0 \). It follows from above that \(X = \bigcup_{n \in \omega} N(A_{z|n,z(n)}) \). In addition, \(A_{z|n,z(n)} \subset F_z(n) = X \setminus \bigcup_{i < n} N(A_{z|n,z(i)}) \).
for all $n > 0$, which implies that $A := \bigcup_{n \in \omega} A_{z|n,z(n)}$ is a closed discrete subset of X. It suffices to note that $N(A) = X$. \hfill \Box

We recall from [5] that a topological space X is called \textit{subparacompact} if every open cover of X has a σ-locally finite closed refinement.

\textbf{Lemma 2.3.} Suppose that X is a subparacompact topological space which can be covered by ω_1-many of its Lindelöf subspaces. Then X has the property D_ω.\footnote{By the methods of [15] the submetalindelöfness is sufficient here.}

In particular, every subparacompact space of size ω_1 has the property D_ω.

\textbf{Proof.} Let $\mathcal{L} = \{L_\xi : \xi < \omega_1\}$ be an increasing cover of X by Lindelöf subspaces, let τ be the topology of X, and let $N : X \to \tau$ be a neighbourhood assignment. Construct by induction a sequence $(C_\alpha : \alpha < \omega_1)$ of (possibly empty) countable subspaces of X such that

(i) $L_0 \subset N(C_0)$;
(ii) $C_\alpha \cap N(\bigcup_{\xi<\alpha} C_\xi) = \emptyset$ for all $\alpha < \omega_1$; and
(iii) $L_\alpha \setminus N(\bigcup_{\xi<\alpha} C_\xi) \subset N(C_\alpha)$ for all $\alpha < \omega_1$.

Set $C = \bigcup_{\alpha < \omega_1} C_\alpha$. The subparacompactness of X yields a closed cover $\mathcal{F} = \bigcup_{n \in \omega} \mathcal{F}_n$ of X which refines $\mathcal{U} = \{N(x) : x \in C\}$ and such that each \mathcal{F}_n is locally finite. Since every element of \mathcal{U} contains at most countably many elements of C, so do elements of \mathcal{F}. Therefore for every $F \in \mathcal{F}_n$ such that $C \cap F \neq \emptyset$ we can write this intersection in the form $\{x_{n,F,m} : m \in \omega\}$. Now it is easy to see that $A_{n,m} := \{x_{n,F,m} : F \in \mathcal{F}_n, C \cap F \neq \emptyset\}$ is a closed discrete subset of X and $\bigcup_{n,m \in \omega} A_{n,m} = C$. \hfill \Box

\textbf{Remark 2.4.} What we have actually used in the proof of Lemma 2.3 is the following weakening of subparacompactness: every open cover \mathcal{U} which is closed under unions of its countable subsets admits a σ-locally finite closed refinement. We do not know whether this property is strictly weaker than subparacompactness.

\textbf{Corollary 2.5.} Let X be a countably tight paracompact topological space of density ω_1. Then X has the property D_ω.

\textbf{Proof.} Let $\{x_\alpha : \alpha < \omega_1\}$ be a dense subspace of X. Since X has countable tightness, $X = \bigcup_{\alpha < \omega_1} \{x_\xi : \xi < \alpha\}$. It suffices to note that the closure of any countable subspace of a paracompact space is Lindelöf. \hfill \Box

It is well known [9, Theorem 4.4] (and it easily follows from corresponding definitions) that any Lindelöf space of size $\aleph \emptyset$ has the Menger property. The same argument shows that every topological space of size $\aleph \emptyset$ has the property E^*_ω. Combining this with Theorem 2.4 and Lemma 2.3 we get the following corollary, which implies the first of the results mentioned in our abstract.

\textbf{Corollary 2.6.} Suppose that X is a subparacompact topological space of size $|X| < \aleph \emptyset$ which can be covered by ω_1-many of its Lindelöf subspaces. Then X is a D-space.

3. CONCERNING THE EXISTENCE OF A MICHAEL SPACE

A topological space X is said to be \textit{productively Lindelöf} if $X \times Y$ is Lindelöf for all Lindelöf spaces Y. It was asked in [19] whether productively Lindelöf spaces are D-spaces. The positive answer to the above question has been proved consistent,
and in a stream of recent papers (see the list of references in [19]) several sufficient set-theoretical conditions were established. The following statement gives a uniform proof for some of these results. In particular, it implies [16] Theorems 5 and 7 and [1] Corollary 4.5 and answers [17] Question 15 in the affirmative.

A Lindelöf space \(Y \) is called a Michael space if \(\omega^\omega \times Y \) is not Lindelöf.

Proposition 3.1. If there exists a Michael space, then every productively Lindelöf space has the Menger property.

We refer the reader to [11], where the existence of a Michael space was reformulated in a combinatorial language and a number of set-theoretical conditions guaranteeing the existence of Michael spaces were established.

In the proof of Proposition 3.1 we shall use set-valued maps; see [13]. By a **set-valued map** \(\Phi \) from a set \(X \) into a set \(Y \) we understand a map from \(X \) into \(\mathcal{P}(Y) \) and write \(\Phi : X \to Y \) (here \(\mathcal{P}(Y) \) denotes the set of all subsets of \(Y \)). For a subset \(A \) of \(X \) we set \(\Phi(A) = \bigcup_{x \in A} \Phi(x) \subset Y \). A set-valued map \(\Phi \) from a topological spaces \(X \) to a topological space \(Y \) is said to be

- **compact-valued** if \(\Phi(x) \) is compact for every \(x \in X \);
- **upper semicontinuous** if for every open subset \(V \) of \(Y \) the set \(\Phi^{-1}(V) = \{ x \in X : \Phi(x) \subset V \} \) is open in \(X \).

The proof of the following claim is straightforward.

Claim 3.2.

1. Suppose that \(X, Y \) are topological spaces, \(X \) is Lindelöf, and \(\Phi : X \to Y \) is a compact-valued upper semicontinuous map such that \(Y = \Phi(X) \). Then \(Y \) is Lindelöf.
2. If \(\Phi_0 : X_0 \to Y_0 \) and \(\Phi_1 : X_1 \to Y_1 \) are compact-valued upper semicontinuous, then so is the map \(\Phi : X_0 \times X_1 \to Y_0 \times Y_1 \) assigning to each \((x_0, x_1) \in X_0 \times X_1 \) the product \(\Phi_0(x_0) \times \Phi_1(x_1) \).

Proof of Proposition 3.1. Suppose, contrary to our claim, that \(X \) is a productively Lindelöf space which does not have the Menger property and \(Y \) is a Michael space. It suffices to show that \(X \times Y \) is not Lindelöf.

Indeed, by [23] Theorem 8 there exists a compact-valued upper semicontinuous map \(\Phi : X \to \omega^\omega \) such that \(\Phi(X) = \omega^\omega \). By Claim 3.2(1) the product \(\omega^\omega \times Y \) is the image of \(X \times Y \) under a compact-valued upper semicontinuous map. By the definition of a Michael space, \(\omega^\omega \times Y \) is not Lindelöf. By applying Claim 3.2(2) we can conclude that \(X \times Y \) is not Lindelöf either.

By a result of Tall [16] the existence of a Michael space implies that all productively Lindelöf analytic metrizable spaces are \(\sigma \)-compact. Combining recent results obtained in [1] and [12], we can consistently extend this result to all \(\Sigma^1_2 \) definable subsets of \(2^\omega \).

Theorem 3.3. Suppose that \(\text{cov}(\mathcal{M}) > \omega_1 \) and that there exists a Michael space. Then every productively Lindelöf \(\Sigma^1_2 \) definable subset of \(2^\omega \) is \(\sigma \)-compact.

Proof. Let \(X \) be a productively Lindelöf \(\Sigma^1_2 \) definable subset of \(2^\omega \).

If \(X \) cannot be written as a union of \(\omega_1 \)-many of its compact subspaces, then it contains a closed copy of \(\omega^\omega \) [12], and hence the existence of the Michael space implies that \(X \) is not productively Lindelöf, a contradiction.

Thus \(X \) can be written as a union of \(\omega_1 \)-many of its compact subspaces, and therefore it is \(\sigma \)-compact by [1] Corollary 4.15.]
We do not know whether the assumption \(\text{cov}(M) > \omega_1 \) can be dropped from Theorem 3.3.

Question 3.4. Suppose that there exists a Michael space. Is every coanalytic productively Lindelöf space \(\sigma \)-compact?

By [18, Proposition 31] the affirmative answer to the question above follows from the Axiom of Projective Determinacy.

4. Locally finite unions

Theorem 4.1. Suppose that \(X \) is a locally \(D \)-space which admits a \(\sigma \)-locally finite cover by Lindelöf spaces. Then \(X \) is a \(D \)-space.

Proof. Let \(\mathcal{F} = \bigcup_{n \in \omega} \mathcal{F}_n \) be a cover of \(X \) by Lindelöf subspaces such that \(\mathcal{F}_n \) is locally finite. Fix \(F \in \mathcal{F}_n \). For every \(x \in F \) there exists an open neighbourhood \(U_x \) of \(x \) such that \(U_x \) is a \(D \)-space. Let \(C_F \) be a countable subset of \(F \) such that \(F \subseteq \bigcup_{x \in C_F} U_x \). Then \(\mathcal{Z}_F = \{ F \cap U_x : x \in C_F \} \) is a countable cover of \(F \) consisting of closed \(D \)-subspaces of \(X \) such that \(F \cap Z \) is dense in \(Z \) for all \(Z \in \mathcal{Z}_F \). It follows from the above that \(X \) admits a \(\sigma \)-locally finite cover consisting of closed \(D \)-subspaces. Since a union of a locally finite family of closed \(D \)-subspaces is easily seen to be a closed \(D \)-subspace, \(X \) is a union of an increasing sequence of its closed \(D \)-subspaces. Therefore it is a \(D \)-space by results of [3]. □

Corollary 4.2. If a topological space \(X \) admits a \(\sigma \)-locally finite locally countable cover by topological spaces with the Menger property, then it is a \(D \)-space. In particular, a locally Lindelöf space admitting a \(\sigma \)-locally finite cover by topological spaces with the Menger property is a \(D \)-space.

Proof. The second part is a direct consequence of the first one since every \(\sigma \)-locally countable family of subspaces of a locally Lindelöf space is locally countable.

To prove the first assertion, note that by local countability every point \(x \in X \) has a closed neighbourhood which is a countable union of its subspaces with the Menger property, and hence it has the Menger property itself. Therefore \(X \) is a locally \(D \)-space. It now suffices to apply Theorem 4.1. □

It is known that every Lindelöf \(C \)-scattered space is \(C \)-like and that \(C \)-like spaces have the Menger property; see [20, p. 247] and references therein. Thus Corollary 4.2 implies Theorems 2.2 and 3.1 from [10].

References

17. Tall, F.D., Lindel¨of spaces which are Menger, Hurewicz, Alster, productive, or D, Topology Appl., to appear.