Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The differentiable sphere theorem for manifolds with positive Ricci curvature


Authors: Hong-Wei Xu and Juan-Ru Gu
Journal: Proc. Amer. Math. Soc. 140 (2012), 1011-1021
MSC (2010): Primary 53C20; Secondary 53C40
DOI: https://doi.org/10.1090/S0002-9939-2011-10952-3
Published electronically: July 21, 2011
MathSciNet review: 2869085
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if $ M^n$ is a compact Riemannian $ n$-manifold and if $ Ric_{\min}>(n-1)\tau_{n}K_{\max}$, where $ K_{\max}(x):=\max_{\pi\subset T_{x}M}K(\pi)$, $ Ric_{\min}(x):=\min_{u\in U_{x}M}Ric(u)$, $ K(\cdot)$ and $ Ric(\cdot)$ are the sectional curvature and Ricci curvature of $ M$ respectively, and $ \tau_{n}=1-\frac{6}{5(n-1)}$, then $ M$ is diffeomorphic to a spherical space form. In particular, if $ M$ is a compact simply connected manifold with $ K\le 1$ and $ Ric_M> (n-1)\tau_{n}$, then $ M$ is diffeomorphic to the standard $ n$-sphere $ S^n$. We also extend the differentiable sphere theorem above to submanifolds in Riemannian manifolds with codimension $ p$.


References [Enhancements On Off] (What's this?)

  • 1. M. Berger, Riemannian geometry during the second half of the twentieth century, University Lecture Series, Vol. 17, American Mathematical Society, Providence, RI, 2000. MR 1729907 (2000h:53002)
  • 2. C. Böhm and B. Wilking, Manifolds with positive curvature operators are space forms, Ann. of Math. (2), 167 (2008), 1079-1097. MR 2415394 (2009h:53146)
  • 3. S. Brendle, A general convergence result for the Ricci flow in higher dimensions, Duke Math. J., 145 (2008), 585-601. MR 2462114 (2010a:53132)
  • 4. S. Brendle, Ricci Flow and the Sphere Theorem, Graduate Studies in Mathematics, Vol. 111, Americam Mathematical Society, 2010. MR 2583938
  • 5. S. Brendle and R. Schoen, Sphere theorems in geometry, Surveys in Differential Geometry, Vol. 13, Int. Press, Somerville, MA, 2009, 49-84. MR 2537082 (2010m:53047)
  • 6. S. Brendle and R. Schoen, Manifolds with $ 1/4$-pinched curvature are space forms, J. Amer. Math. Soc., 22 (2009), 287-307. MR 2449060 (2010a:53045)
  • 7. S. Brendle and R. Schoen, Classification of manifolds with weakly $ 1/4$-pinched curvatures, Acta Math., 200 (2008), 1-13. MR 2386107 (2009h:53087)
  • 8. D. Gromoll, Differenzierbare Strukturen und Metriken positiver Krümmung auf Sphären, Math. Ann., 164 (1966), 353-371. MR 0196754 (33:4940)
  • 9. R. Hamilton, Three manifolds with positive Ricci curvature, J. Differential Geom., 17 (1982), 255-306. MR 664497 (84a:53050)
  • 10. P. Hartman, Oscillation criteria for self-adjoint second-order differential systems and ``principal sectional curvature'', J. Differential Equations, 34 (1979), 326-338. MR 550049 (81a:34034)
  • 11. G. Huisken, Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature, Invent. Math., 84 (1986), 463-480. MR 837523 (87f:53066)
  • 12. P. Petersen and T. Tao, Classification of almost quarter-pinched manifolds, Proc. Amer. Math. Soc., 137 (2009), 2437-2440. MR 2495279 (2010m:53046)
  • 13. R. Schoen and S. T Yau, Complete three-dimensional manifolds with positive Ricci curvature and scalar curvature, Ann. Math. Studies, 102 (1982), 209-228. MR 645740 (83k:53060)
  • 14. Z. M. Shen, A sphere theorem for manifolds of positive Ricci curvature, Indiana Univ. Math. J., 38 (1989), 229-233. MR 982579 (90h:53044)
  • 15. Z. M. Shen, On complete manifolds of nonnegative $ k$-th Ricci curvature, Trans. Amer. Math. Soc., 338(1993), 289-310. MR 1112548 (93j:53054)
  • 16. K. Shiohama, Sphere theorems, Handbook of Differential Geometry, Vol. 1, F. J. E. Dillen and L. C. A. Verstraelen (eds.), Elsevier Science B.V., Amsterdam, 2000. MR 1736859 (2001c:53051)
  • 17. K. Shiohama and H. W. Xu, The topological sphere theorem for complete submanifolds, Compositio Math., 107 (1997), 221-232. MR 1458750 (98i:53080)
  • 18. H. Wu, Manifolds of partially positive curvature, Indiana Univ. Math. J., 36 (1987), 525-548. MR 905609 (88k:53068)
  • 19. H. W. Xu and J. R. Gu, An optimal differentiable sphere theorem for complete manifolds, Math. Res. Lett., 17 (2010), 1111-1124.
  • 20. H. W. Xu and E. T. Zhao, Topological and differentiable sphere theorems for complete submanifolds, Comm. Anal. Geom., 17 (2009), 565-585. MR 2550209 (2010k:53067)
  • 21. W. Ziller, The Jacobi equation on naturally reductive compact Riemannian homogeneous spaces, Comm. Math. Helv., 52 (1977), 573-590. MR 0474145 (57:13795)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 53C20, 53C40

Retrieve articles in all journals with MSC (2010): 53C20, 53C40


Additional Information

Hong-Wei Xu
Affiliation: Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027, People’s Republic of China
Email: xuhw@cms.zju.edu.cn

Juan-Ru Gu
Affiliation: Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027, People’s Republic of China
Email: gujr@cms.zju.edu.cn

DOI: https://doi.org/10.1090/S0002-9939-2011-10952-3
Keywords: Compact manifolds, differentiable sphere theorem, Ricci curvature, Ricci flow, second fundamental form.
Received by editor(s): November 6, 2010
Received by editor(s) in revised form: December 11, 2010
Published electronically: July 21, 2011
Additional Notes: Research supported by the NSFC, grant No. 10771187, 11071211, and the Trans-Century Training Programme Foundation for Talents by the Ministry of Education of China.
Communicated by: Jianguo Cao
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society