The number of Goldbach representations of an integer

Authors:
Alessandro Languasco and Alessandro Zaccagnini

Journal:
Proc. Amer. Math. Soc. **140** (2012), 795-804

MSC (2010):
Primary 11P32; Secondary 11P55

DOI:
https://doi.org/10.1090/S0002-9939-2011-10957-2

Published electronically:
July 20, 2011

MathSciNet review:
2869064

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the von Mangoldt function and be the counting function for the Goldbach numbers. Let and assume that the Riemann Hypothesis holds. We prove that

**1.**Tom M. Apostol,*Introduction to analytic number theory*, Springer-Verlag, New York-Heidelberg, 1976. Undergraduate Texts in Mathematics. MR**0434929****2.**Gautami Bhowmik and Jan-Christoph Schlage-Puchta,*Mean representation number of integers as the sum of primes*, Nagoya Math. J.**200**(2010), 27–33. MR**2747876**, https://doi.org/10.1215/00277630-2010-010**3.**Harold Davenport,*Multiplicative number theory*, 3rd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000. Revised and with a preface by Hugh L. Montgomery. MR**1790423****4.**Akio Fujii,*An additive problem of prime numbers*, Acta Arith.**58**(1991), no. 2, 173–179. MR**1121079**, https://doi.org/10.4064/aa-58-2-173-179**5.**Akio Fujii,*An additive problem of prime numbers. II*, Proc. Japan Acad. Ser. A Math. Sci.**67**(1991), no. 7, 248–252. MR**1137920****6.**Akio Fujii,*An additive problem of prime numbers. III*, Proc. Japan Acad. Ser. A Math. Sci.**67**(1991), no. 8, 278–283. MR**1137928****7.**P. X. Gallagher,*A large sieve density estimate near 𝜎=1*, Invent. Math.**11**(1970), 329–339. MR**0279049**, https://doi.org/10.1007/BF01403187**8.**Andrew Granville,*Refinements of Goldbach’s conjecture, and the generalized Riemann hypothesis*. part 1, Funct. Approx. Comment. Math.**37**(2007), no. part 1, 159–173. MR**2357316**, https://doi.org/10.7169/facm/1229618748**9.**Andrew Granville,*Corrigendum to “Refinements of Goldbach’s conjecture, and the generalized Riemann hypothesis” [MR2357316]*. part 2, Funct. Approx. Comment. Math.**38**(2008), no. part 2, 235–237. MR**2492859****10.**G. H. Hardy and J. E. Littlewood,*Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes*, Acta Math.**44**(1923), no. 1, 1–70. MR**1555183**, https://doi.org/10.1007/BF02403921**11.**A. Languasco,*Some refinements of error terms estimates for certain additive problems with primes*, J. Number Theory**81**(2000), no. 1, 149–161. MR**1743499**, https://doi.org/10.1006/jnth.1999.2468**12.**A. Languasco and A. Perelli,*On Linnik’s theorem on Goldbach numbers in short intervals and related problems*, Ann. Inst. Fourier (Grenoble)**44**(1994), no. 2, 307–322 (English, with English and French summaries). MR**1296733****13.**U. V. Linnik,*A new proof of the Goldbach-Vinogradow theorem*, Rec. Math. [Mat. Sbornik] N.S.**19 (61)**(1946), 3–8 (Russian, with English summary). MR**0018693****14.**Yu. V. Linnik,*Some conditional theorems concerning the binary Goldbach problem*, Izvestiya Akad. Nauk SSSR. Ser. Mat.**16**(1952), 503–520 (Russian). MR**0053961**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
11P32,
11P55

Retrieve articles in all journals with MSC (2010): 11P32, 11P55

Additional Information

**Alessandro Languasco**

Affiliation:
Dipartimento di Matematica Pura e Applicata, Università di Padova, Via Trieste 63, 35121 Padova, Italy

Email:
languasco@math.unipd.it

**Alessandro Zaccagnini**

Affiliation:
Dipartimento di Matematica, Università di Parma, Parco Area delle Scienze 53/a, Campus Universitario, 43124 Parma, Italy

Email:
alessandro.zaccagnini@unipr.it

DOI:
https://doi.org/10.1090/S0002-9939-2011-10957-2

Keywords:
Goldbach-type theorems,
Hardy-Littlewood method

Received by editor(s):
November 11, 2010

Received by editor(s) in revised form:
December 16, 2010

Published electronically:
July 20, 2011

Communicated by:
Matthew A. Papanikolas

Article copyright:
© Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.