Abstract: Let be the von Mangoldt function and be the counting function for the Goldbach numbers. Let and assume that the Riemann Hypothesis holds. We prove that
where runs over the non-trivial zeros of the Riemann zeta-function . This improves a recent result by Bhowmik and Schlage-Puchta.
1.Tom
M. Apostol, Introduction to analytic number theory,
Springer-Verlag, New York-Heidelberg, 1976. Undergraduate Texts in
Mathematics. MR
0434929 (55 #7892)
3.Harold
Davenport, Multiplicative number theory, 3rd ed., Graduate
Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000.
Revised and with a preface by Hugh L. Montgomery. MR 1790423
(2001f:11001)
9.Andrew
Granville, Corrigendum to “Refinements of Goldbach’s
conjecture, and the generalized Riemann hypothesis” [MR2357316].
part 2, Funct. Approx. Comment. Math. 38 (2008),
no. part 2, 235–237. MR 2492859
(2010c:11125)
12.A.
Languasco and A.
Perelli, On Linnik’s theorem on Goldbach numbers in short
intervals and related problems, Ann. Inst. Fourier (Grenoble)
44 (1994), no. 2, 307–322 (English, with
English and French summaries). MR 1296733
(95g:11097)
13.U.
V. Linnik, A new proof of the Goldbach-Vinogradow theorem,
Rec. Math. [Mat. Sbornik] N.S. 19 (61) (1946), 3–8
(Russian, with English summary). MR 0018693
(8,317c)
14.Yu.
V. Linnik, Some conditional theorems concerning the binary Goldbach
problem, Izvestiya Akad. Nauk SSSR. Ser. Mat. 16
(1952), 503–520 (Russian). MR 0053961
(14,847b)
A. Granville, Corrigendum to ``Refinements of Goldbach's conjecture, and the generalized Riemann hypothesis'', Funct. Approx. Comment. Math., 38 (2008), 235-237. MR 2492859 (2010c:11125)
G. H. Hardy, J. E. Littlewood, Some problems of `Partitio Numerorum'; III: On the expression of a number as a sum of primes, Acta Math., 44 (1923), 1-70. MR 1555183
A. Languasco, Some refinements of error terms estimates for certain additive problems with primes, J. Number Theory, 81 (2000), 149-161. MR 1743499 (2001h:11130)
A. Languasco, A. Perelli, On Linnik's theorem on Goldbach number in short intervals and related problems, Ann. Inst. Fourier, 44 (1994), 307-322. MR 1296733 (95g:11097)
Y. Linnik, Some conditional theorems concerning the binary Goldbach problem, Izv. Akad. Nauk SSSR Ser. Mat., 16 (1952), 503-520 (Russian). MR 0053961 (14:847b)
Alessandro Languasco Affiliation:
Dipartimento di Matematica Pura e Applicata, Università di Padova, Via Trieste 63, 35121 Padova, Italy
Email:
languasco@math.unipd.it
Alessandro Zaccagnini Affiliation:
Dipartimento di Matematica, Università di Parma, Parco Area delle Scienze 53/a, Campus Universitario, 43124 Parma, Italy
Email:
alessandro.zaccagnini@unipr.it