Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The number of Goldbach representations of an integer


Authors: Alessandro Languasco and Alessandro Zaccagnini
Journal: Proc. Amer. Math. Soc. 140 (2012), 795-804
MSC (2010): Primary 11P32; Secondary 11P55
DOI: https://doi.org/10.1090/S0002-9939-2011-10957-2
Published electronically: July 20, 2011
MathSciNet review: 2869064
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Lambda$ be the von Mangoldt function and $ R(n) = \sum_{h+k=n} \Lambda(h)\Lambda(k) $ be the counting function for the Goldbach numbers. Let $ N \geq 2$ and assume that the Riemann Hypothesis holds. We prove that

$\displaystyle \sum_{n=1}^{N} R(n) = \frac{N^{2}}{2} -2 \sum_{\rho} \frac{N^{\rho + 1}}{\rho (\rho + 1)} + \mathcal{O}(N \log^{3}N), $

where $ \rho=1/2+i\gamma$ runs over the non-trivial zeros of the Riemann zeta-function $ \zeta(s)$. This improves a recent result by Bhowmik and Schlage-Puchta.


References [Enhancements On Off] (What's this?)

  • 1. T. Apostol, Introduction to Analytic Number Theory, Springer-Verlag (1976). MR 0434929 (55:7892)
  • 2. G. Bhowmik, J.-C. Schlage-Puchta, Mean representation number of integers as the sum of primes, Nagoya Math. J., 200 (2010), 27-33. MR 2747876
  • 3. H. Davenport, Multiplicative Number Theory, Springer-Verlag, 3rd ed. (2000). MR 1790423 (2001f:11001)
  • 4. A. Fujii, An additive problem of prime numbers, Acta Arith., 58 (1991), 173-179. MR 1121079 (92k:11106)
  • 5. A. Fujii, An additive problem of prime numbers. II, Proc. Japan Acad. Ser. A Math. Sci., 67 (1991), 248-252. MR 1137920 (93b:11132a)
  • 6. A. Fujii, An additive problem of prime numbers. III, Proc. Japan Acad. Ser. A Math. Sci., 67 (1991), 278-283. MR 1137928 (93b:11132b)
  • 7. P. X. Gallagher, A large sieve density estimate near $ \sigma=1$, Invent. Math., 11 (1970), 329-339. MR 0279049 (43:4775)
  • 8. A. Granville, Refinements of Goldbach's conjecture, and the generalized Riemann hypothesis, Funct. Approx. Comment. Math., 37 (2007), 159-173. MR 2357316 (2009b:11179)
  • 9. A. Granville, Corrigendum to ``Refinements of Goldbach's conjecture, and the generalized Riemann hypothesis'', Funct. Approx. Comment. Math., 38 (2008), 235-237. MR 2492859 (2010c:11125)
  • 10. G. H. Hardy, J. E. Littlewood, Some problems of `Partitio Numerorum'; III: On the expression of a number as a sum of primes, Acta Math., 44 (1923), 1-70. MR 1555183
  • 11. A. Languasco, Some refinements of error terms estimates for certain additive problems with primes, J. Number Theory, 81 (2000), 149-161. MR 1743499 (2001h:11130)
  • 12. A. Languasco, A. Perelli, On Linnik's theorem on Goldbach number in short intervals and related problems, Ann. Inst. Fourier, 44 (1994), 307-322. MR 1296733 (95g:11097)
  • 13. Y. Linnik, A new proof of the Goldbach-Vinogradow theorem, Rec. Math. N.S., 19 (1946), 3-8 (Russian). MR 0018693 (8:317c)
  • 14. Y. Linnik, Some conditional theorems concerning the binary Goldbach problem, Izv. Akad. Nauk SSSR Ser. Mat., 16 (1952), 503-520 (Russian). MR 0053961 (14:847b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11P32, 11P55

Retrieve articles in all journals with MSC (2010): 11P32, 11P55


Additional Information

Alessandro Languasco
Affiliation: Dipartimento di Matematica Pura e Applicata, Università di Padova, Via Trieste 63, 35121 Padova, Italy
Email: languasco@math.unipd.it

Alessandro Zaccagnini
Affiliation: Dipartimento di Matematica, Università di Parma, Parco Area delle Scienze 53/a, Campus Universitario, 43124 Parma, Italy
Email: alessandro.zaccagnini@unipr.it

DOI: https://doi.org/10.1090/S0002-9939-2011-10957-2
Keywords: Goldbach-type theorems, Hardy-Littlewood method
Received by editor(s): November 11, 2010
Received by editor(s) in revised form: December 16, 2010
Published electronically: July 20, 2011
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society