Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on open 3-manifolds supporting foliations by planes


Authors: Carlos Biasi and Carlos Maquera
Journal: Proc. Amer. Math. Soc. 140 (2012), 961-969
MSC (2010): Primary 37C85; Secondary 57R30
DOI: https://doi.org/10.1090/S0002-9939-2011-10960-2
Published electronically: July 18, 2011
MathSciNet review: 2869080
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if $ N$, an open connected $ n$-manifold with finitely generated fundamental group, is $ C^{2}$ foliated by closed planes, then $ \pi_{1}(N)$ is a free group. This implies that if $ \pi_{1}(N)$ has an abelian subgroup of rank greater than one, then $ \mathcal{F}$ has at least a nonclosed leaf. Next, we show that if $ N$ is three dimensional with fundamental group abelian of rank greater than one, then $ N$ is homeomorphic to $ \mathbb{T}^2\times \mathbb{R}.$ Furthermore, in this case we give a complete description of the foliation.


References [Enhancements On Off] (What's this?)

  • 1. J. A. Álvarez López, J. L. Arraut and C. Biasi, Foliations by planes and Lie group actions. Ann. Pol. Math. 82 (2003), 61-69. MR 2041398 (2004m:57071)
  • 2. G. Chatelet and H. Rosenberg, Un théorème de conjugaison des feuilletages. Ann. Inst. Fourier (Grenoble) 21 3 (1971), 95-106. MR 0346807 (49:11531)
  • 3. G. Chatelet, H. Rosenberg and D. Weil, A classification of the topological types of $ \mathbb{R}^2$-actions on closed orientable 3-manifolds. Pub. Math. IHES 43 (1974), 261-272. MR 0346809 (49:11533)
  • 4. David Gabai, Convergence groups are Fuchsian groups. Ann. of Math. (2) 136 (1992), 447-510. MR 1189862 (93m:20065)
  • 5. C. Godbillon, Feuilletages Études géométriques. Progress in Mathematics, Birkhäuser (1991). MR 1120547 (93i:57038)
  • 6. A. Hatcher, Algebraic Topology. Cambridge University Press (2002). MR 1867354 (2002k:55001)
  • 7. J. Hempel, 3-manifolds. Princeton University Press (1976). MR 0415619 (54:3702)
  • 8. S. P. Novikov, Topology of foliations. Trudy nzosk. Mm. Obshch. 14 (1970), 513-583. MR 0200938 (34:824)
  • 9. C. F. B. Palmeira, Open manifolds foliated by planes. Ann. of Math. (2) 107 (1978), 109-131. MR 0501018 (58:18490)
  • 10. H. Rosenberg and R. Roussarie, Topological equivalence of Reeb foliations. Topology 9 (1970), 231-242. MR 0263107 (41:7712)
  • 11. H. Rosenberg and R. Roussarie, Reeb foliations. Ann. of Math. (2) 91 (1970), 1-24. MR 0258057 (41:2704)
  • 12. Harold Rosenberg, Foliations by planes. Topology 7 (1968), 131-138. MR 0228011 (37:3595)
  • 13. Harold Rosenberg, Actions of $ \mathbb{R}^n$ on manifolds. Comment. Math. Helvet. (1966), 36-44. MR 0206978 (34:6794)
  • 14. J-P. Serre, Sur la dimension cohomologique des grupes profinis. Topology 3 (1965), 413-420. MR 0180619 (31:4853)
  • 15. John R. Stallings, On torsion-free groups with infinitely many ends. Ann. of Math. (2) 88 (1968), 312-334. MR 0228573 (37:4153)
  • 16. Norman Steenrod, The Topology of Fibre Bundles. Princeton Landmarks in Math., Princeton Univ. Press (1951). MR 0039258 (12:522b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37C85, 57R30

Retrieve articles in all journals with MSC (2010): 37C85, 57R30


Additional Information

Carlos Biasi
Affiliation: Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo-São Carlos, Av. do Trabalhador São-Carlense 400, 13560-970 São Carlos, SP, Brazil
Email: biasi@icmc.usp.br

Carlos Maquera
Affiliation: Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo-São Carlos, Av. do Trabalhador São-Carlense 400, 13560-970 São Carlos, SP, Brazil
Email: cmaquera@icmc.usp.br

DOI: https://doi.org/10.1090/S0002-9939-2011-10960-2
Keywords: Foliation by planes, open manifolds, incompressible torus, fundamental group, free group
Received by editor(s): June 15, 2009
Received by editor(s) in revised form: May 28, 2010, August 28, 2010, and December 18, 2010
Published electronically: July 18, 2011
Additional Notes: The first author was supported by FAPESP Grant 2008/57607-6.
The second author was supported by CNPq and FAPESP Grants 2008/57607-6 and 2009/17493-4.
Communicated by: Alexander N. Dranishnikov
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society