ON AN INCLUSION OF THE ESSENTIAL SPECTRUM OF LAPLACIANS UNDER NON-COMPACT CHANGE OF METRIC

JUN MASAMUNE

(Communicated by Matthew J. Gursky)

Abstract. The stability of essential self-adjointness and an inclusion of the essential spectra of Laplacians under the change of a Riemannian metric on a subset K of M are proved. The set K may have infinite volume measured with the new metric, and its completion may contain a singular set such as the fractal set, to which the metric is not extendable.

1. Introduction

Let (M, g) be a connected smooth Riemannian manifold without boundary. The Laplacian Δ of g is called essentially self-adjoint if it has the unique self-adjoint extension $\overline{\Delta}$. In [4], Furutani showed that if Δ with the domain $C_0^\infty(M)$ is essentially self-adjoint and if g is changed on a compact set $K \subset M$ to another smooth metric g' on M, then the Laplacian Δ' of g' with the domain $C_0^\infty(M)$ is essentially self-adjoint; and the essential spectra are stable under this change. In particular, the second result forms a strong contrast to the behavior of the eigenvalues, since eigenvalues change continuously with the perturbation of the metric in a certain way (see e.g. [1]).

 Needless to say, there are many important Riemannian manifolds with singularity, by which we mean that g does not extend to the Cauchy boundary (the difference between the completion of M and M), such as algebraic varieties, cone manifolds, edge manifolds, Riemannian orbifolds. In general, the analysis on such a singular space is complicated, and one of the methods to overcome the difficulties is to modify the singularity to a simpler one by the perturbation of the Riemannian metric. The crucial steps in this process is to study the stability of the essential self-adjointness of the Laplacian and to understand the behavior of its spectral structure under the perturbation.

Motivated by these facts, we extend Furutani’s theorem to more general K so that K is not compact and its completion \overline{K} includes the singular set. In this
setting, the natural domain \(D(\Delta)\) for the Laplacian is the following:

\[
\begin{align*}
D(\nabla) &= \{u \in C^\infty \cap L^2 : \nabla u \in L^2\}, \\
D(\text{div}) &= \{X \in C^\infty \cap L^2 : \text{div} X \in L^2\}, \\
D(\Delta) &= \{u \in D(\nabla) : \nabla u \in D(\text{div})\}.
\end{align*}
\]

(We suppress \(M\) and the Riemann measure \(d\mu_g\) for the sake of simplicity.) Indeed, if the Cauchy boundary \(\partial_C M\) is almost polar, namely,

\[
\text{Cap}(\partial_C M) = 0
\]

(see Section 2 for the definition and see also e.g. [3]), then \(M\) has negligible boundary [9], and by the Gaffney theorem [6], \(\Delta\) is essentially self-adjoint. Throughout the article, we assume that the Laplacians have the domain defined in (1). The following is our main result:

Theorem 1. Let \(g\) and \(g'\) be Riemannian metrics on \(M\) such that \(g = g'\) outside a subset \(K\) of \(M\). If \(\Delta\) is essentially self-adjoint in \(L^2\) and the Cauchy boundary of \(K\) with respect to \(g'\) is almost polar, then \(\Delta'\) is essentially self-adjoint in \(L^2(M; d\mu_{g'})\). Additionally, if there is a function \(\chi\) on \(M\) satisfying

\[
\nabla \chi \in L^\infty, \quad \Delta \chi \in L^\infty, \quad \text{and} \quad \chi|_K = 1,
\]

where \(\nabla\) is the gradient of \(g\), and the inclusion

\[
H^1_0(N; d\mu_g) \subset L^2(N; d\mu_g)
\]

is compact for some \(N \supset N(\text{supp}(\chi); \epsilon)\) with some \(\epsilon > 0\), where \(N(\text{supp}(\chi); \epsilon)\) is the \(\epsilon\)-neighborhood of the support of \(\chi\), then

\[
\sigma_{\text{ess}}(\Delta) \subset \sigma_{\text{ess}}(\Delta').
\]

A special case of Theorem 1 is

Corollary 1 (Furutani’s stability result [4]). Let \(g\) and \(g'\) be Riemannian metrics on \(M\) such that \(g = g'\) outside a compact subset \(K\) of \(M\). If \(\Delta\) is essentially self-adjoint in \(L^2\), then \(\Delta'\) is essentially self-adjoint in \(L^2(M; d\mu_{g'})\), and

\[
\sigma_{\text{ess}}(\Delta) = \sigma_{\text{ess}}(\Delta').
\]

A typical example of manifolds which satisfies the condition of Theorem 1 is given as follows:

Corollary 2 (see Section 3). Let \(M\) be a complete manifold and let \(\Sigma \subset M\) be an almost polar compact subset. If \(\Sigma\) is almost polar with respect to a metric \(g'\) on \(M \setminus \Sigma\) and \(g = g'\) outside a compact set \(K \subset M\), then the same conclusion in the theorem holds true.

We may apply Theorem 1 for singular manifolds: we change \(g\) to \(g'\) on a bounded set \(K \supset \partial_C M\) so that \(g'\) can be extended to the almost polar Cauchy boundary with respect to \(g\) and conclude that \(\Delta\) is essentially self-adjoint in \(L^2(M; d\mu_g)\) and \(\sigma_{\text{ess}}(\Delta) \subset \sigma_{\text{ess}}(\Delta')\).

A sufficient condition for \(\partial_C M\) to be almost polar is that it has Minkowski co-dimension greater than 2 [7] (if the metric of \(g\) extends to \(\partial_C M\) and \(\partial_C M\) is a manifold, then it is almost polar if \(\partial_C M\) has co-dimension 2).

The idea for proving the inclusion of the essential spectrum in Theorem 1 is to apply Weyl’s criteria: a number \(\lambda\) belongs to \(\sigma_{\text{ess}}(\Delta)\) if and only if there is a
sequence ϕ_n of “limit-eigenfunctions” of Δ corresponding to λ (see Proposition 2 for details). Indeed, we show that if χ satisfies (2) and (3), then there is a subsequence $\phi_{n(k)}$ such that $(1 - \chi)\phi_{n(k)}$ is a limit-eigenfunction of Δ'.

Our results differ from Furutani’s original results on the following two points. In order to explain those differences, let us employ an example. Let $M = K \cup B(1)$, where $K = \{(x, y, z) \in S^2 : z \geq 0\} \setminus (0, 0, 1)$ and $B(r) = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \leq r^2, z = 0\}$. Namely, M is S^2 with flat bottom with deleted north point. (To be more precise, we need to smooth the intersection of K and $B(1)$ so that M is a smooth Riemannian manifold.) Since the Cauchy boundary of M is the north point and it has null capacity, the Laplacian Δ is essentially self-adjoint. We modify M by the stereographic projection so that (M, g') is the 2-dimensional Euclidean space \mathbb{R}^2. Since (M, g') is complete, the Cauchy boundary is empty, and the Laplacian Δ' is essentially self-adjoint. Next, we find the function χ which satisfies condition (2) as follows:

$$\chi \in C_0^\infty(M \setminus B(1/3))$$

and $\chi = 1$ on K.

By letting $\epsilon = 1/3$ and $N = M \setminus B(1/4)$, condition (3) is satisfied. Indeed, since the north point has null capacity, the spectrum of the Laplacian on M consists only of the eigenvalues with finite multiplicity, whereas Δ' has only essential spectrum. This proves that the inclusion in Theorem 1 holds. This example also shows that the assumptions in Corollary 1 are sharp in the sense that we may not drop the assumption that K must be compact in order to obtain (4), that is, Furutani’s stability result. Indeed, if we modify the metric of \mathbb{R}^2 to obtain M, then there is no subset N of \mathbb{R}^2 which satisfies condition (3).

The second difference is that the essential self-adjointness of Δ does not need to imply that of Δ restricted to $C_0^\infty(M)$; for instance, Δ on M is essentially self-adjoint, but Δ restricted to $C_0^\infty(M)$ has infinitely many self-adjoint extensions. In particular, it is not essentially self-adjoint (see e.g. [2]).

We organize the article in the following manner: in Section 2 we prove Theorem 1 and in Section 3 we present the examples.

2. Proofs

In this section we recall some definitions and prove Theorem 1 and Corollary 1. For the sake of simplicity, we often suppress the symbols M and $d\mu_\gamma$.

We denote by (\cdot, \cdot) and $(\cdot, \cdot)_1$ the inner product in L^2 and the Sobolev space H^1 of order $(1, 2)$, respectively. H^1_0 is the completion of the set C_0^∞ of smooth functions with compact support with respect to the norm $\| \cdot \|_1 = \sqrt{(\cdot, \cdot)_1}$. Let \mathcal{O} be the family of all open subsets of \overline{M}. For $A \in \mathcal{O}$ we define $\mathcal{L}_A = \{u \in H^1 : u \geq 1$ μ_γ-a.e. on $M \cap A\}$,

$$\text{Cap}(A) = \begin{cases} \inf_{u \in \mathcal{L}_A} \|u\|_1, & \mathcal{L}_A \neq \phi, \\ \infty, & \mathcal{L}_A = \phi, \end{cases}$$

and

$$\text{Cap}(\partial C M) = \inf_{A \in \mathcal{O}, \partial C \subset A} \text{Cap}(A).$$
We will use

Proposition 1 (Lemma 2.1.1 of [3]). If $\mathcal{L}_A \neq \phi$ for $A \in \mathcal{O}$, there exists a unique element $e_A \in \mathcal{L}_A$ called the equilibrium potential of A such that the following hold:

(i) $\|e_A\|^2 = \text{Cap}(A)$.
(ii) $0 \leq e_A \leq 1$ μ_g-a.e. and $e_A = 1$ μ_g-a.e. on $A \cap M$.
(iii) If $A, B \in \mathcal{O}$, $A \subset B$, then $e_A \leq e_B$ μ_g-a.e.

We prove Theorem 1. We use the following characterization:

Proof of the essential self-adjointness of Δ. For arbitrary $u \in H^1(M; d\mu_{g'})$, we have to find $\hat{u}_n \in H^1(M; d\mu_{g'})$ which converges to u in $H^1(M; d\mu_{g'})$. Indeed, this implies that (M, g') has negligible boundary, and hence Δ is essentially self-adjoint by Gaffney’s theorem [6].

Since $L^\infty(M) \cap H^1(M; d\mu_{g'})$ is dense in $H^1(M; d\mu_{g'})$, we may assume that $u \in L^\infty(M)$ without loss of generality. Let

$$\psi := (1 - r)_+,$$

where r is the distance from K. The function $\psi \in L^\infty(M)$ enjoys the properties

$$\psi|_K = 1 \quad \text{and} \quad \|\nabla \psi\|_{L^\infty} \leq 1.$$

Since

$$|(1 - \psi)u(x)| \leq (1 + \|\psi\|_{L^\infty})|u(x)|$$

and

$$|\nabla((1 - \psi)u(x))| \leq (1 + \|\psi\|_{L^\infty})|\nabla u(x)| + |u(x)|,$$

for almost every $x \in M$, it follows that $(1 - \psi)u \in H^1$. Recalling that the essential self-adjointness of Δ implies $H_0^1 = H^1$ [3], we find $v_n \in C_0^\infty(M \setminus K)$ such that

$$v_n \rightarrow (1 - \psi)u \quad \text{as} \quad n \rightarrow \infty$$

in $H^1(M \setminus K)$. Because the Cauchy boundary $\partial_C M$ of M associated to g' is almost polar, there is a sequence of the equilibrium potentials e_n of $O_n \supset \partial_C M$ such that $\bigcap_{n>1} O_n = \partial_C M$ and

$$\|e_n\|_{H^2(M; d\mu_{g'})} \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty.$$

Then $u_n := (1 - e_n)\psi u \in H_0^1(M; d\mu_{g'})$ satisfies

$$u_n \rightarrow \psi u \quad \text{as} \quad n \rightarrow \infty$$

in $H^1(M; d\mu_{g'})$, and we get $\hat{u}_n = u_n + v_n \in H^1_0(M; d\mu_{g'})$ such that

$$\hat{u}_n \rightarrow (1 - \psi)u + \psi u = u \quad \text{as} \quad n \rightarrow \infty$$

in $H^1(M; d\mu_{g'})$.

Next, we prove the inclusion of the essential spectrum and complete the proof of Theorem 1. We use the following characterization:

Proposition 2 (Weyl’s criterion). A number λ belongs to the essential spectrum of Δ if and only if there is a sequence of orthonormal vectors $\{\phi_n\}$ of L^2 such that

$$\|((\Delta - \lambda)\phi_n)\|_{L^2} \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty.$$
Proof of the inclusion of the essential spectrum. We assume (2) and (3) to prove the inclusion of the essential spectrum. Hereafter, we denote $\Delta = \Delta$ and $\Delta' = \Delta'$ because of their essential self-adjointness. Let $\lambda \in \sigma_{\text{ess}}(\Delta)$ and $\phi_n \in D(\Delta)$ such that
\[
(\phi_i, \phi_j) = \delta_{ij},
\]
\[
\| (\Delta - \lambda) \phi_n \| \to 0 \text{ as } n \to \infty,
\]
where $\| \cdot \| = \sqrt{\langle \cdot, \cdot \rangle}$. Let χ be the function satisfying (2) and let ϕ be the function defined as
\[
\phi = (1 - \hat{r}/\epsilon)_+,
\]
where \hat{r} is the distance from the support of χ. Clearly, we have
\[
\text{(6)} \quad \sup_{n > 0} \| \phi \phi_n \| < \infty.
\]
Moreover, taking into account that $\phi_n \in D(\Delta)$ implies
\[
\| \nabla \phi_n \|^2 = -(\phi_n, \Delta \phi_n),
\]
it follows that
\[
\limsup_{n \to \infty} \| \nabla (\phi \phi_n) \| \leq \| \nabla \phi \|_{L^\infty} + \limsup_{n \to \infty} \| \nabla \phi_n \| \leq \| \nabla \phi \|_{L^\infty} + \limsup_{n \to \infty} (\| \Delta \phi_n \| \| \phi_n \|^{1/2} \leq \infty.
\]
Hence,
\[
\text{(7)} \quad \limsup_{n \to \infty} \| \phi \phi_n \|_1 < \infty.
\]
Now, specifying $\epsilon > 0$ as in the statement, by (6) and the fact that the embedding $H^1_0(N) \subset L^2(N)$ is compact, there exists a subsequence $\phi_{n(k)}$ of ϕ_n and $\phi' \in L^2$ such that
\[
\phi_{n(k)} \to \phi' \text{ strongly in } L^2 \text{ as } k \to \infty.
\]
However, if $f \in L^2$, then $f \phi \in L^2$ and
\[
(f, \phi_n) = (f \phi, \phi_n) \to 0 \text{ as } n \to \infty;
\]
hence, $\phi \phi_{n(k)} \to 0$ weakly in L^2 as $k \to \infty$. Because of the uniqueness of the weak-limits, it follows that $\phi' = 0$, and we may assume
\[
\text{(8)} \quad \| \phi \phi_n \| \to 0 \text{ as } n \to \infty
\]
without loss of generality. Since $\phi = 1$ on supp(χ),
\[
\| (\Delta - \lambda)(\chi \phi_n) \| \leq \| (\Delta \chi) \phi_n \| + 2\| (\nabla \chi, \nabla \phi_n) \| + \| \chi (\Delta - \lambda) \phi_n \| \leq \| \Delta \chi \|_{L^\infty} \| \phi_n \| + 2\| \nabla \chi \|_{L^\infty} \| \nabla \phi_n \|_{L^2(\text{supp}(\chi))} + \| \chi \|_{L^\infty} \| (\Delta - \lambda) \phi_n \|.
\]
The first and third terms in the last line tend to 0 as $n \to \infty$ because of (5) and (6). The second term can be estimated as
\[
\| \nabla \chi \|_{L^\infty} \| \nabla (\phi \phi_n) \| \leq \| \nabla \chi \|_{L^\infty} \| \Delta \phi_n \| \| \phi \phi_n \| \to 0 \text{ as } n \to \infty.
\]
Thus, since $1 - \chi = 0$ and $g = g'$ on $M \setminus K$,
\[
\| (\Delta' - \lambda)((1 - \chi) \phi_n) \|_{L^2(M; g_{\mu_r})} = \| (\Delta - \lambda)((1 - \chi) \phi_n) \| \to 0 \text{ as } n \to \infty.
\]
On the other hand,
\[\|(1 - \chi)\varphi_n\|_{L^2(M; d\mu_g)} \geq \|\varphi_n\| - \|\chi\varphi_n\| \geq 1 - \|\varphi\varphi_n\| \to 1 \text{ as } n \to \infty, \]
and we conclude that \(\lambda \in \sigma_{\text{ess}}(\Delta') \) by Weyl’s criterion. \qed

Finally, we assume that \(K \) is compact to prove the essential self-adjointness of the Laplacian and the stability of the essential spectrum, namely, Corollary 1.

Proof of Corollary 1. We will show that the Laplacian \(\Delta' \) is essentially self-adjoint and that there exist the function \(\chi \) and the subset \(N \) of \(M \) which satisfy conditions (2) and (3) for each metric \(g \) and \(g' \). This will imply \(\sigma_{\text{ess}}(\Delta) = \sigma_{\text{ess}}(\Delta') \) by Theorem 1.

Recall that if \(K \) is compact, then its Cauchy boundary is empty so that the Laplacian \(\Delta' \) is essentially self-adjoint.

Since \(K \) is compact and \(g \) is smooth, there exists \(\epsilon > 0 \) such that for any \(0 < \epsilon < \epsilon_0 \), the metric \(g \) and its higher order (up to 2nd) derivatives are bounded on \(N = N(K; 2\epsilon) = \{x \in M : d(x, K) < 2\epsilon\} \). Let
\[\hat{\chi}(x) = (1 \wedge (2 - 3\tilde{r}(x)/\epsilon))_+, \]
where \(\tilde{r} \) is the distance from \(K \). The function \(\hat{\chi} \) is 1 on \(N(K; \epsilon/3) \) and has support in \(N(K; 2\epsilon/3) \), and it satisfies \(\|\nabla\hat{\chi}\|_{L^\infty} \leq 3/\epsilon \). However, since \(\hat{\chi} \) does not need to be in the Sobolev space \(H^2 \) of order \((2, 2) \), we apply the Friedrichs mollifier \(j \) with radius \(\delta > 0 \) for \(\hat{\chi} \) to find the smooth function \(\chi = j * \hat{\chi} \). If \(\delta < \epsilon/3 \), then \(\chi \) satisfies
\[\begin{cases} \chi(x) = 1 & \text{for } x \in K, \\ \text{supp}(\chi) \subset N(K; 2\epsilon/3), \\ \|\nabla\chi\|_{L^\infty} \leq 3/\epsilon, \\ \Delta\chi \in L^\infty, \end{cases} \]
namely, condition (2). On the other hand, since \(K \) is compact, \(N_\epsilon \) and \(N \) are relatively compact in \(M \) with sufficiently small \(\epsilon > 0 \). Hence, \(N \) has finite volume and finite diameter, and the Poincaré inequality holds on \(N \). It follows that the embedding \(H_0^2(N; d\mu_g) \subset L^2(N; d\mu_g) \) is compact, that is, condition (3). We obtain the inclusion: \(\sigma_{\text{ess}}(\Delta) \subset \sigma_{\text{ess}}(\Delta') \).

This argumentation holds true if we replace \(g \) by \(g' \), and we arrive at the conclusion. \qed

3. **Examples**

In this section, we present examples of manifolds for which Theorem 1 can be applied.

Example 1 (see [8]). Let \((M, g)\) be an \(m \)-dimensional complete Riemannian manifold and let \(\Sigma \subset M \) be an \(n \)-dimensional compact manifold with \(m \geq n + 2 \). Assume that \(M \) has the product structure \(M^{m-n} \times M^n \) near \(\Sigma \) and that \(g \) can be diagonalized. Choose local coordinates in a neighborhood \(K \) of \(\Sigma \) so that
\[g = g_1 \oplus g_2 \]
in K, where g_1 is a metric on M^{m-n} and g_2 is a metric on M^n. Let g' be another smooth metric on $M \setminus \Sigma$ so that

$$g' = \begin{cases} f^2 g_1 \oplus g_2, & \text{on } K, \\ g, & \text{on } M \setminus K. \end{cases}$$

If $m = 2$, assume that $f \in L^{2+\epsilon}(K; d\mu_g)$ for some $\epsilon \in (0, \infty)$. If $m = 3$, assume that $\inf(f) > 0$ and $f \in L^{(m(m-2)/2)+\epsilon}(K; d\mu_g)$ for some $\epsilon \in (0, \infty)$.

Then the manifold $M \setminus \Sigma$ with metrics g and g' satisfies the assumption of Theorem 1. In particular, if M is compact, Δ' on $(M \setminus \Sigma, g')$ has discrete spectrum, which satisfies the Weyl asymptotic formula [8].

In the next example, the manifold has fractal singularity.

Example 2. Let (M, g) be a complete Riemannian manifold with dimension greater than 2. Let $\Sigma \subset M$ be the Cantor set, r the distance in M from Σ, and $B(R)$ the R-neighborhood of Σ. Set

$$g' = f^2 g,$$

where

$$f(x) = \begin{cases} r^\epsilon, & x \in B = B(1), \\ 1, & x \in M \setminus B. \end{cases}$$

It is shown in [9] that Σ is the almost polar Cauchy boundary of $(M \setminus \Sigma; g')$ if

$$\epsilon > \frac{\ln 2 - \ln 3}{2\ln 3 - \ln 2}.$$

The compact inclusion

$$H^1_0(B \setminus \Sigma) \subset L^2(B \setminus \Sigma)$$

can be seen as follows. By definition, $H^1_0(B \setminus \Sigma) \subset H^1_0(B)$, and the inclusion $H^1_0(B) \subset L^2(B) = L^2(B \setminus \Sigma)$ is compact; thus, it suffices to show

$$H^1_0(B \setminus \Sigma) \subset H^1_0(B).$$

Let $u \in H^1_0(B)$. Since $L^\infty \cap H^1_0(B) \subset H^1_0(B)$ is dense, we may assume that $u \in L^\infty$ without loss of generality. Let e_n be the equilibrium potential as in the proof of Theorem 1. Then $u_n = u(1 - e_n) \in H^1_0(B \setminus \Sigma)$ and

$$u_n \rightarrow u \text{ in } H^1_0(B; d\mu_g),$$

and hence $u \in H^1_0(B \setminus \Sigma)$. The function χ can be found as the relative equilibrium potential of $B(1)$ and $B(2)$ applied to the Friedrichs mollifier. Therefore, $M \setminus \Sigma$ together with g and g' satisfies the condition of Theorem 1. Let us point out the following:

- $(M \setminus \Sigma, g')$ is $C^{1,1}$ and is not smooth, but Theorem 1 can be applied to this setting.
- We can show the compact embedding $H^1_0(B \setminus \Sigma; d\mu_{g'}) \subset L^2(B \setminus \Sigma; d\mu_{g'})$ only for $\epsilon \geq 0$.

In the next example, K has infinite volume with g'.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Example 3. Let M be a 2-dimensional complete Riemannian manifold. Delete a point $p \in M$ and set

$$g' = f^2 g,$$

where

$$f(x) = \begin{cases} r^{-\epsilon}, & x \in B = B(1), \\ 1, & x \in M \setminus B, \end{cases}$$

and r is the distance from p. For any $\epsilon \geq 1$, $(M \setminus \{p\}, g')$ is complete and $\mu_{g'}(B \setminus \{p\}) = \infty$.

More generally, if M is a complete manifold and $\Sigma \subset M$ is a compact set, then there is a smooth Riemannian metric g' on $M \setminus \Sigma$ and a compact set $K \subset M$ such that $g = g'$ on $M \setminus K$, $(M \setminus \Sigma; g')$ is complete and there exist a function χ and a subset N of $M \setminus \Sigma$ satisfying conditions (2) and (3), respectively.

ACKNOWLEDGMENT

The author would like to thank the referee for a careful reading and constructive discussions.

REFERENCES

DEPARTMENT OF MATHEMATICAL SCIENCES, WORCESTER POLYTECHNIC INSTITUTE, 100 INSTITUTE ROAD, WORCESTER, MASSACHUSETTS 01609-2280

Current address: Department of Mathematics and Statistics, Pennsylvania State University-Altoona, 3000 Iveyside Park, Altoona, Pennsylvania 16601

E-mail address: jum35@psu.edu