Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Stafney's lemma holds for several ``classical'' interpolation methods


Author: Alon Ivtsan
Journal: Proc. Amer. Math. Soc. 140 (2012), 881-889
MSC (2010): Primary 46B70; Secondary 46B45
DOI: https://doi.org/10.1090/S0002-9939-2011-10974-2
Published electronically: August 12, 2011
MathSciNet review: 2869072
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \left(B_{0},B_{1}\right)$ be a Banach pair. Stafney showed that one can replace the space $ \mathcal{F}\left(B_{0},B_{1}\right)$ by its dense subspace $ \mathcal{G}\left(B_{0},B_{1}\right)$ in the definition of the norm in the Calderón complex interpolation method on the strip if the element belongs to the intersection of the spaces $ B_{i}$. We shall extend this result to a more general setting, which contains well-known interpolation methods: the Calderón complex interpolation method on the annulus, the Lions-Peetre real method (with different choices of norms), and the Peetre ``$ \pm$'' method.


References [Enhancements On Off] (What's this?)

  • [1] Y. Brudnyi, N. Krugljak, Interpolation Functors and Interpolation Spaces, Vol. 1, North-Holland, Amsterdam, 1991. MR 1107298 (93b:46141)
  • [2] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190. MR 0167830 (29:5097)
  • [3] R. Coifman, M. Cwikel, R. Rochberg, Y. Sagher and G. Weiss, A theory of complex interpolation for families of Banach spaces, Adv. in Math. 43 (1982), 203-229. MR 648799 (83j:46084)
  • [4] M. Cwikel, Complex interpolation, a discrete definition and reiteration, Indiana Univ. Math. J. 27 (1978), 1005-1009. MR 511254 (80h:46118)
  • [5] M. Cwikel, Lecture notes on duality and interpolation spaces. arXiv:0803.3558 [math.FA].
  • [6] M. Cwikel and S. Janson, Complex interpolation of compact operators mapping into the couple $ (FL^{\infty},FL_{1}^{\infty})$, in Contemporary Mathematics 445 (L. De Carli and M. Milman, eds.), American Mathematical Society, Providence R.I., 2007, 71-92. Preliminary version: arXiv:math/0606551v1 [math.FA]. MR 2381887 (2009i:46047)
  • [7] M. Cwikel, N. Kalton, M. Milman and R. Rochberg, A unified theory of commutator estimates for a class of interpolation methods, Adv. in Math. 169 (2002), 241-312. MR 1926224 (2003k:46104)
  • [8] M. Cwikel, M. Milman and Y. Sagher, Complex interpolation of some quasi-Banach spaces, J. Functional Analysis 65 (1986), 339-347. MR 826431 (87h:46152)
  • [9] M. Cwikel and J. Peetre, Abstract K and J spaces, J. Math. Pures Appl. 60 (1981), 1-50. MR 616007 (82h:46092)
  • [10] J. Gustavsson and J. Peetre, Interpolation of Orlicz spaces, Studia Math. 60 (1977), 33-59. MR 0438102 (55:11021)
  • [11] A. Harcharras, Fourier analysis, Schur multipliers on $ S^p$ and non-commutative $ \Lambda(p)$-sets, Studia Math. 137 (1999), (3) 203-260. MR 1736011 (2001f:43004)
  • [12] A. Harcharras, On some stability properties of the full $ C^*$-algebra generated by the free group $ \mathbb{F}_{\infty}$, Proc. Edinburgh Math. Soc. 41 (1998), 93-116. MR 1604349 (2000c:46113)
  • [13] S. Janson, Minimal and maximal methods of interpolation, J. Functional Analysis 44 (1981), 50-73. MR 638294 (83j:46085)
  • [14] Y. Katznelson, An Introduction to Harmonic Analysis, Second Corrected Edition, Dover Publications, Inc., New York, 1976. MR 0422992 (54:10976)
  • [15] S. V. Kisliakov and Q. Xu, Interpolation of weighted and vector-valued Hardy spaces, Trans. Amer. Math. Soc. 343 (1994), 1-34. MR 1236225 (95b:46038)
  • [16] J. L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation, Inst. Hautes Études Sci. Publ. Math. 19 (1964), 5-68. MR 0165343 (29:2627)
  • [17] J. Peetre, A theory of interpolation of normed spaces, Notas de Matematica No. 39, Rio de Janeiro, 1968, 88 pp. MR 0243340 (39:4662)
  • [18] J. Peetre, Sur l'utilization des suites inconditionellement sommables dans la théorie des espaces d'interpolation, Rend. Sem. Mat. Univ. Padova 46 (1971), 173-190. MR 0308811 (46:7925)
  • [19] J. D. Stafney, The spectrum of an operator on an interpolation space, Trans. Amer. Math. Soc. 144 (1969), 333-349. MR 0253054 (40:6269)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46B70, 46B45

Retrieve articles in all journals with MSC (2010): 46B70, 46B45


Additional Information

Alon Ivtsan
Affiliation: Department of Mathematics, Technion I.I.T., Haifa 32000, Israel
Address at time of publication: Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
Email: aloniv@weizmann.ac.il

DOI: https://doi.org/10.1090/S0002-9939-2011-10974-2
Keywords: Interpolation spaces, Banach sequence spaces
Received by editor(s): August 31, 2010
Received by editor(s) in revised form: December 13, 2010
Published electronically: August 12, 2011
Communicated by: Richard Rochberg
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society