On the number of factors in the unipotent factorization of holomorphic mappings into SL

Authors:
Björn Ivarsson and Frank Kutzschebauch

Journal:
Proc. Amer. Math. Soc. **140** (2012), 823-838

MSC (2010):
Primary 32E10

Published electronically:
June 23, 2011

MathSciNet review:
2869067

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We estimate the number of unipotent elements needed to factor a null-homotopic holomorphic map from a finite dimensional reduced Stein space into SL.

**[Coh66]**P. M. Cohn,*On the structure of the 𝐺𝐿₂ of a ring*, Inst. Hautes Études Sci. Publ. Math.**30**(1966), 5–53. MR**0207856****[For10]**Franc Forstnerič,*The Oka principle for sections of stratified fiber bundles*, Pure Appl. Math. Q.**6**(2010), no. 3, Special Issue: In honor of Joseph J. Kohn., 843–874. MR**2677316**, 10.4310/PAMQ.2010.v6.n3.a11**[FP01]**Franc Forstnerič and Jasna Prezelj,*Extending holomorphic sections from complex subvarieties*, Math. Z.**236**(2001), no. 1, 43–68. MR**1812449**, 10.1007/PL00004826**[FP02]**Franc Forstnerič and Jasna Prezelj,*Oka’s principle for holomorphic submersions with sprays*, Math. Ann.**322**(2002), no. 4, 633–666. MR**1905108**, 10.1007/s002080100249**[Gro89]**M. Gromov,*Oka’s principle for holomorphic sections of elliptic bundles*, J. Amer. Math. Soc.**2**(1989), no. 4, 851–897. MR**1001851**, 10.1090/S0894-0347-1989-1001851-9**[IK08a]**Björn Ivarsson and Frank Kutzschebauch.

Holomorphic factorization of mappings into SL.

Submitted for publication, arXiv:0812.0312, December 2008.**[IK08b]**Björn Ivarsson and Frank Kutzschebauch,*A solution of Gromov’s Vaserstein problem*, C. R. Math. Acad. Sci. Paris**346**(2008), no. 23-24, 1239–1243 (English, with English and French summaries). MR**2473300**, 10.1016/j.crma.2008.10.017**[IK10]**Björn Ivarsson and Frank Kutzschebauch.

On Kazhdan's property (T) for the special linear group of holomorphic functions,

2010, unpublished manuscript.**[Sus77]**A. A. Suslin,*The structure of the special linear group over rings of polynomials*, Izv. Akad. Nauk SSSR Ser. Mat.**41**(1977), no. 2, 235–252, 477 (Russian). MR**0472792****[Vas88]**L. N. Vaserstein,*Reduction of a matrix depending on parameters to a diagonal form by addition operations*, Proc. Amer. Math. Soc.**103**(1988), no. 3, 741–746. MR**947649**, 10.1090/S0002-9939-1988-0947649-X**[vdK82]**Wilberd van der Kallen,*𝑆𝐿₃(𝐶[𝑋]) does not have bounded word length*, Algebraic 𝐾-theory, Part I (Oberwolfach, 1980) Lecture Notes in Math., vol. 966, Springer, Berlin-New York, 1982, pp. 357–361. MR**689383**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
32E10

Retrieve articles in all journals with MSC (2010): 32E10

Additional Information

**Björn Ivarsson**

Affiliation:
Department of Natural Sciences, Engineering and Mathematics, Mid Sweden University, SE-851 70 Sundsvall, Sweden

Email:
Bjorn.Ivarsson@miun.se

**Frank Kutzschebauch**

Affiliation:
Institute of Mathematics, University of Bern, Sidlerstrasse 5, CH–3012 Bern, Switzerland

Email:
frank.kutzschebauch@math.unibe.ch

DOI:
https://doi.org/10.1090/S0002-9939-2011-11025-6

Received by editor(s):
December 5, 2010

Published electronically:
June 23, 2011

Additional Notes:
The second author was supported by Schweizerische Nationalfonds grant 200021-116165/1.

Communicated by:
Franc Forstneric

Article copyright:
© Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.