Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Every $ K(n)$-local spectrum is the homotopy fixed points of its Morava module


Authors: Daniel G. Davis and Takeshi Torii
Journal: Proc. Amer. Math. Soc. 140 (2012), 1097-1103
MSC (2010): Primary 55P42, 55T15
DOI: https://doi.org/10.1090/S0002-9939-2011-11189-4
Published electronically: July 18, 2011
MathSciNet review: 2869094
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ n \geq 1$ and let $ p$ be any prime. Also, let $ E_n$ be the Lubin-Tate spectrum, $ G_n$ the extended Morava stabilizer group, and $ K(n)$ the $ n$th Morava $ K$-theory spectrum. Then work of Devinatz and Hopkins and some results due to Behrens and the first author of this paper show that if $ X$ is a finite spectrum, then the localization $ L_{K(n)}(X)$ is equivalent to the homotopy fixed point spectrum $ (L_{K(n)}(E_n \wedge X))^{hG_n}$, which is formed with respect to the continuous action of $ G_n$ on $ L_{K(n)}(E_n \wedge X)$. In this paper, we show that this equivalence holds for any ($ S$-cofibrant) spectrum $ X$. Also, we show that for all such $ X$, the strongly convergent Adams-type spectral sequence abutting to $ \pi_\ast(L_{K(n)}(X))$ is isomorphic to the descent spectral sequence that abuts to $ \pi_\ast((L_{K(n)}(E_n \wedge X))^{hG_n}).$


References [Enhancements On Off] (What's this?)

  • 1. Mark Behrens and Daniel G. Davis.
    The homotopy fixed point spectra of profinite Galois extensions.
    Trans. Amer. Math. Soc., 362(9):4983-5042, 2010. MR 2645058 (2011e:55016)
  • 2. Daniel G. Davis.
    Homotopy fixed points for $ L\sb {K(n)}(E\sb n\wedge X)$ using the continuous action.
    J. Pure Appl. Algebra, 206(3):322-354, 2006. MR 2235364 (2007b:55008)
  • 3. Ethan S. Devinatz.
    A Lyndon-Hochschild-Serre spectral sequence for certain homotopy fixed point spectra.
    Trans. Amer. Math. Soc., 357(1):129-150 (electronic), 2005. MR 2098089 (2006b:55007)
  • 4. Ethan S. Devinatz and Michael J. Hopkins.
    Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups.
    Topology, 43(1):1-47, 2004. MR 2030586 (2004i:55012)
  • 5. P. G. Goerss and M. J. Hopkins.
    Moduli spaces of commutative ring spectra.
    In Structured ring spectra, volume 315 of London Math. Soc. Lecture Note Ser., pages 151-200. Cambridge Univ. Press, Cambridge, 2004. MR 2125040 (2006b:55010)
  • 6. Mark Hovey.
    Bousfield localization functors and Hopkins' chromatic splitting conjecture.
    In The Čech Centennial (Boston, MA, 1993), pages 225-250. Contemp. Math., vol. 181, Amer. Math. Soc., Providence, RI, 1995. MR 1320994 (96m:55010)
  • 7. Mark Hovey, Brooke Shipley, and Jeff Smith.
    Symmetric spectra.
    J. Amer. Math. Soc., 13(1):149-208, 2000. MR 1695653 (2000h:55016)
  • 8. M. A. Mandell, J. P. May, S. Schwede, and B. Shipley.
    Model categories of diagram spectra.
    Proc. London Math. Soc. (3), 82(2):441-512, 2001. MR 1806878 (2001k:55025)
  • 9. Haynes R. Miller.
    On relations between Adams spectral sequences, with an application to the stable homotopy of a Moore space.
    J. Pure Appl. Algebra, 20(3):287-312, 1981. MR 604321 (82f:55029)
  • 10. Haynes R. Miller, Douglas C. Ravenel, and W. Stephen Wilson.
    Periodic phenomena in the Adams-Novikov spectral sequence.
    Ann. of Math. (2), 106(3):469-516, 1977. MR 0458423 (56:16626)
  • 11. Jack Morava.
    Noetherian localisations of categories of cobordism comodules.
    Ann. of Math. (2), 121(1):1-39, 1985. MR 782555 (86g:55004)
  • 12. John Rognes.
    Galois extensions of structured ring spectra.
    In Galois extensions of structured ring spectra/Stably dualizable groups, Mem. Amer. Math. Soc., vol. 192 (898), pages 1-97, 2008. MR 2387923 (2009c:55007)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 55P42, 55T15

Retrieve articles in all journals with MSC (2010): 55P42, 55T15


Additional Information

Daniel G. Davis
Affiliation: Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504
Email: dgdavis@louisiana.edu

Takeshi Torii
Affiliation: Department of Mathematics, Faculty of Science, Okayama University, Okayama 700-8530, Japan
Email: torii@math.okayama-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9939-2011-11189-4
Received by editor(s): December 17, 2010
Published electronically: July 18, 2011
Additional Notes: The first author was partially supported by a grant (LEQSF(2008-11)-RD-A-27) from the Louisiana Board of Regents.
Communicated by: Brooke Shipley
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society