Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the set where the iterates of an entire function are bounded


Author: Walter Bergweiler
Journal: Proc. Amer. Math. Soc. 140 (2012), 847-853
MSC (2010): Primary 37F10, 30D05, 37F35
DOI: https://doi.org/10.1090/S0002-9939-2011-11456-4
Published electronically: November 3, 2011
MathSciNet review: 2869069
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that for a transcendental entire function the set of points whose orbit under iteration is bounded can have arbitrarily small positive Hausdorff dimension.


References [Enhancements On Off] (What's this?)

  • 1. I. N. Baker, Repulsive fixpoints of entire functions. Math. Z. 104 (1968), 252-256. MR 0226009 (37:1599)
  • 2. -, The domains of normality of an entire function. Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), 277-283. MR 0402044 (53:5867)
  • 3. K. Barański, B. Karpińska and A. Zdunik, Hyperbolic dimension of Julia sets of meromorphic maps with logarithmic tracts. Int. Math. Res. Not. IMRN 2009, 615-624. MR 2480096 (2009k:37109)
  • 4. W. Bergweiler, Iteration of meromorphic functions. Bull.Amer. Math. Soc. (N.S.) 29 (1993), 151-188. MR 1216719 (94c:30033)
  • 5. -, A new proof of the Ahlfors five islands theorem. J. Anal. Math. 76 (1998), 337-347. MR 1676971 (99m:30032)
  • 6. -, The role of the Ahlfors five islands theorem in complex dynamics. Conform. Geom. Dyn. 4 (2000), 22-34. MR 1741773 (2001c:37040)
  • 7. W. Bergweiler, P. J. Rippon and G. M. Stallard, Dynamics of meromorphic functions with direct or logarithmic singularities. Proc. London Math. Soc. 97 (2008), 368-400. MR 2439666 (2010b:37122)
  • 8. J. P. R. Christensen and P. Fischer, Ergodic invariant probability measures and entire functions. Acta Math. Hungar. 73 (1996), 213-218. MR 1415932 (97h:30041)
  • 9. A. E. Eremenko, On the iteration of entire functions. In ``Dynamical Systems and Ergodic Theory''. Banach Center Publications 23, Polish Scientific Publishers, Warsaw, 1989, pp. 339-345. MR 1102727 (92c:30027)
  • 10. A. E. Eremenko and M. Ju. Ljubich, Examples of entire functions with pathological dynamics. J. London Math. Soc. (2) 36 (1987), 458-468. MR 918638 (89e:30047)
  • 11. K. J. Falconer, Fractal Geometry. Mathematical Foundations and Applications. John Wiley & Sons, Chichester, 1990. MR 1102677 (92j:28008)
  • 12. W. K. Hayman, Meromorphic Functions. Clarendon Press, Oxford, 1964. MR 0164038 (29:1337)
  • 13. F. Przytycki and M. Urbański, Conformal Fractals: Ergodic Theory Methods. London Math. Soc. Lect. Note Ser. 371. Cambridge Univ. Press, Cambridge, 2010. MR 2656475 (2011g:37002)
  • 14. L. Rempe, Hyperbolic dimension and radial Julia sets of transcendental functions. Proc. Amer. Math. Soc. 137 (2009), 1411-1420. MR 2465667 (2010h:37100)
  • 15. L. Rempe and G. M. Stallard, Hausdorff dimensions of escaping sets of transcendental entire functions. Proc. Amer. Math. Soc. 138 (2010), 1657-1665. MR 2587450 (2011a:37097)
  • 16. P. J. Rippon and G. M. Stallard, Escaping points of meromorphic functions with a finite number of poles. J. Anal. Math. 96 (2005), 225-245. MR 2177186 (2006f:30032)
  • 17. -, Dimensions of Julia sets of meromorphic functions with finitely many poles. Ergodic Theory Dynam. Systems 26 (2006), 525-538. MR 2218773 (2007c:37051)
  • 18. -, Fast escaping points of entire functions. Preprint, arXiv:1009.5081v1.
  • 19. G. M. Stallard, The Hausdorff dimension of Julia sets of meromorphic functions. J. London Math. Soc. (2) 49 (1994), 281-295. MR 1260113 (95b:58127)
  • 20. -, The Hausdorff dimension of Julia sets of entire functions. II. Math. Proc. Cambridge Philos. Soc. 119 (1996), 513-536. MR 1357062 (97a:58157)
  • 21. -, Dimensions of Julia sets of transcendental meromorphic functions. In ``Transcendental Dynamics and Complex Analysis''. London Math. Soc. Lect. Note Ser. 348. Cambridge Univ. Press, Cambridge, 2008, pp. 425-446. MR 2458811 (2010h:37101)
  • 22. M. Zinsmeister, Thermodynamic Formalism and Holomorphic Dynamical Systems. SMF/ AMS Texts and Monographs 2. Amer. Math. Soc., Providence, RI; Soc. Math. France, Paris, 2000. MR 1724307 (2000h:37063)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37F10, 30D05, 37F35

Retrieve articles in all journals with MSC (2010): 37F10, 30D05, 37F35


Additional Information

Walter Bergweiler
Affiliation: Mathematisches Seminar, Christian–Albrechts–Universität zu Kiel, Ludewig–Meyn–Str. 4, D–24098 Kiel, Germany
Email: bergweiler@math.uni-kiel.de

DOI: https://doi.org/10.1090/S0002-9939-2011-11456-4
Received by editor(s): December 6, 2010
Published electronically: November 3, 2011
Additional Notes: The author was supported by a Chinese Academy of Sciences Visiting Professorship for Senior International Scientists, Grant No. 2010 TIJ10. He was also supported by the Deutsche Forschungsgemeinschaft, Be 1508/7-1, the EU Research Training Network CODY and the ESF Networking Programme HCAA
Communicated by: Mario Bonk
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society