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THE PRINCIPAL INVERSE OF THE GAMMA FUNCTION

MITSURU UCHIYAMA

(Communicated by Richard Rochberg)

Abstract. Let Γ(x) be the gamma function in the real axis and α the maximal
zero of Γ′(x). We call the inverse function of Γ(x)|(α,∞) the principal inverse

and denote it by Γ−1(x). We show that Γ−1(x) has the holomorphic extension
Γ−1(z) to C\ (−∞,Γ(α)], which maps the upper half-plane into itself, namely
a Pick function, and that Γ(Γ−1(z)) = z on C \ (−∞,Γ(α)].

1. Introduction

The Euler form of the gamma function Γ(x) is given by

Γ(x) =

∫ ∞

0

e−ttx−1dt

for x > 0. The Weierstrass form

(1.1)
1

Γ(x)
= xeγx

∞∏
n=1

(1 +
x

n
)e−

x
n

extends it to R \ {0,−1,−2, · · · }, where γ is the Euler constant defined by

γ = lim
n→∞

(1 +
1

2
+ · · ·+ 1

n
− log n) = 0.57721 · · · .

From this it follows that

log Γ(x) = − log x− γx+

∞∑
n=1

(x
n
− log(1 +

x

n
)
)
,(1.2)

Γ′(x)

Γ(x)
= −γ +

∞∑
n=0

(
1

n+ 1
− 1

n+ x
).(1.3)

This is called the psi function or digamma function. It is clear that Γ(1) = Γ(2) =
1, Γ′(1) = −γ, Γ′(2) = −γ + 1. Denote the unique zero in (0,∞) of Γ′(x) by α. It
is known that α = 1.4616 · · · and Γ(α) = 0.8856 · · · . We call the inverse function of
the restriction of Γ(x) to (α,∞) the principal inverse function and denote it by Γ−1.
Γ−1(x) is an increasing and concave function defined on (Γ(α),∞). (1.1) guarantees
that Γ(x) has the holomorphic extension which is a meromorphic function with poles
at non-positive integers and (1.3) holds there. Let Π+ and Π− be respectively the
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open upper half-plane and the open lower half-plane. A holomorphic function
defined on Π+ is called a Pick function or Nevanlinna function if it maps Π+ into
itself. From (1.3) it follows that Γ′(z) does not vanish on C \ (−∞, α]; in fact,
Γ′(z)/Γ(z) is a Pick function. Hence for each point ω0 ∈ Γ(C \ (−∞, α]) there is a
local inverse of Γ(z) in a neighborhood of ω0.

Some other Pick functions related to the gamma function were investigated in
[1] and [2].

The main objective of this paper is to show

Theorem 1. The principal inverse Γ−1(x) of Γ(x) has the holomorphic extension
Γ−1(z) to C \ (−∞,Γ(α)], which satisfies

(i) Γ−1(Π+) ⊂ Π+ and Γ−1(Π−) ⊂ Π−,
(ii) Γ−1(z) is univalent,
(iii) Γ(Γ−1(z)) = z for z ∈ C \ (−∞,Γ(α)].

We remark that (iii) implies that D := Γ−1 (C \ (−∞,Γ(α)]) is a domain includ-
ing (α,∞) and Γ(D) = C \ (−∞,Γ(α)], and Γ−1(Γ(z)) = z for z ∈ D.

To prove Theorem 1 we use the theory of kernel functions. Let K(x, y) be a real
continuous function defined on I× I and suppose K(x, y) = K(y, x). Then K(x, y)
is said to be a positive semidefinite (abbreviated to p.s.d.) kernel function on an
interval I × I if

(1.4)

∫∫
I×I

K(x, y)φ(x)φ(y)dxdy � 0

for every real continuous function φ with compact support in I. In this case, (1.4)
holds for complex-valued functions φ(x) as well, provided we take the complex
conjugate of φ(y). It is clear that K(x, y) is p.s.d. if and only if for each n and for
all n points xi ∈ I, the n× n matrices

(K(xi, xj))
n
i,j=1

are positive semidefinite matrices. Suppose K(x, y) � 0 for every x, y in I. Then
K(x, y) is said to be infinitely divisible if K(x, y)a is p.s.d. for every a > 0. K(x, y)
is said to be conditionally (or almost) positive semidefinite (abbreviated to c.p.s.d.)
on I if (1.4) holds for every continuous function φ on I such that the support of
φ is compact and the integral of φ over I vanishes. One can see that K(x, y) is
c.p.s.d. if and only if

(1.5)

n∑
i,j=1

K(xi, xj)zizj � 0

for each n, for all n points xi ∈ I and for n complex numbers zi with
∑n

i=1 zi = 0.
Let f(x) be a C1-function on I. Then the Löwner kernel function is defined by

Kf (x, y) =

⎧⎨
⎩

f(x)−f(y)
x−y (x �= y),

f ′(x) (x = y).

The following excellent theorem is due to Löwner [7] (also see Koranyi [6] and
[8]).

Theorem A. Let f(x) be a C1-function on I. Then the Löwner kernel function
Kf (x, y) is p.s.d. if and only if f(x) has a holomorphic extension f(z) to Π+ and
it is a Pick function.
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2. Proof of Theorem 1

We begin with a simple fact which follows from Theorem A because log x defined
on (0,∞) extends to a Pick function.

Lemma 2.

K1(x, y) :=

⎧⎨
⎩

log x−log y
x−y (x �= y)

1
x (x = y)

is p.s.d. on (0,∞)× (0,∞).

Lemma 3. Let K2(x, y) be the function defined on (0,∞)× (0,∞) by

K2(x, y) :=

⎧⎪⎨
⎪⎩

log Γ(x)−log Γ(y)
x−y (x �= y)

Γ′(x)
Γ(x) (x = y).

Then −K2(x, y) is c.p.s.d. on (0,∞).

Proof. Suppose that the support of φ(x) is included in [m,M ] with m > 0 and∫M

m
φ(x)dx = 0. From (1.2) it follows that −K2(x, y) = K1(x, y) + γ − Kg(x, y),

where Kg is a Löwner kernel function of g defined by

g(x) =

∞∑
k=1

(x
k
− log(1 +

x

k
)
)
.

Since K1(x, y) is p.s.d. and
∫∞
0

∫∞
0

γφ(x)φ(y)dxdy = 0, we have only to show that
−Kg(x, y) is c.p.s.d. Put

gn(x) =

n∑
k=1

(x
k
− log(1 +

x

k
)
)
.

Then

g′n(x) =
n∑

k=1

x

k(k + x)

converges uniformly to
∑∞

k=1
x

k(k+x) = g′(x) on [0,M ]. The sequence of Löwner ker-

nel functions Kgn(x, y) converges uniformly to Kg(x, y) on [0,M ] × [0,M ];
indeed,

Kgn(x, y)−Kg(x, y) =

⎧⎨
⎩

1
x−y

∫ x

y
(g′n(t)− g′(t)) dt (x �= y)

g′n(x)− g′(x) (x = y).

Since

−Kgn(x, y) =

n∑
k=1

(
−1

k
+

1

k
K1(1 +

x

k
, 1 +

y

k
)

)

is c.p.s.d., so is −Kg(x, y). �

Note that a similar proof is given in [3], where it is proved that Γ(z)c is the
Mellin transform of a positive measure on (0,∞) for each c > 0.

The following is known ([8], p. 152; [9] and [10]), but for completeness we give
a proof.
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Lemma 4. Let K(x, y) > 0 for x, y ∈ I. If −K(x, y) is c.p.s.d. on I × I, then the
reciprocal function 1

K(x,y) is infinitely divisible there.

Proof. Take xi ∈ I (i = 1, 2, · · · , n) and put aij = K(xi, xj). Define bij by

bij = aij − ain − anj + ann (1 � i, j � n).

Since −aij = −K(xi, xj) satisfies (1.5), the matrix (−bij) is positive semidefinite
(see p. 134 of [8] or p. 458 of [11]). By Schur’s theorem, the matrix (e−bij ) is
positive semidefinite too.

e−aij = e−ain+
ann
2 e−bije−anj+

ann
2

implies that the matrix (exp(−aij)) is p.s.d. as well. Thus we have shown that
exp(−K(x, y)) is p.s.d. We note that exp(−tK(x, y)) is also p.s.d. for t > 0 since
−tK(x, y) is c.p.s.d. By making use of

Γ(a) = ka
∫ ∞

0

e−ktta−1dt (a > 0)

we get

K(x, y)−a =
1

Γ(a)

∫ ∞

0

exp(−tK(x, y))ta−1dt,

which is p.s.d. This implies that 1/K(x, y) is infinitely divisible. �

Lemma 5. Let K3(x, y) be the kernel function defined on (α,∞)× (α,∞) by

K3(x, y) =

⎧⎨
⎩

x−y
Γ(x)−Γ(y) (x �= y)

1
Γ′(x) (x = y).

Then K3(x, y) is p.s.d.

Proof. Let K1(x, y) and K2(x, y) be the kernel functions defined in Lemma 2 and
Lemma 3, respectively. Since K1(x, y) is p.s.d. on (0,∞) × (0,∞) and since Γ(x)
is differentiable and increasing on (α,∞),

K1(Γ(x),Γ(y)) =

⎧⎪⎨
⎪⎩

log Γ(x)−log Γ(y)
Γ(x)−Γ(y) (x �= y)

1
Γ(x) (x = y)

is p.s.d. on (α,∞) × (α,∞). Since Γ(x) is increasing on (α,∞), K2(x, y) > 0 for

(x, y) ∈ (α,∞) × (α,∞). By Lemma 3 and Lemma 4,
1

K2(x, y)
is not only p.s.d.

but also infinitely divisible. Thus the Schur product

K3(x, y) = K1(Γ(x),Γ(y)) ·
1

K2(x, y)

is p.s.d. on (α,∞)× (α,∞) too. �

Proof of Theorem 1. The Löwner kernel KΓ−1(x, y) defined on (Γ(α),∞)
×(Γ(α),∞) by

KΓ−1(x, y) =

⎧⎪⎨
⎪⎩

Γ−1(x)−Γ−1(y)
x−y (x �= y)

(Γ−1)′(x) (x = y)
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coincides with K3(Γ
−1(x),Γ−1(y)), which is p.s.d. Thus by Theorem A, Γ−1(x) has

the holomorphic extension Γ−1(z) onto Π+, which is a Pick function. By reflection,
Γ−1(x) also has a holomorphic extension to Π− and the range is in it. We thus get
(i). Γ(Γ−1(z)) is thus holomorphic on the simply connected domain C\(−∞,Γ(α)],
and Γ(Γ−1(x)) = x for Γ(α) < x < ∞. By the uniqueness theorem, Γ

(
Γ−1(z)

)
= z

for z ∈ C \ (−∞,Γ(α)]. This means (iii), which clearly yields (ii). �

In the proof of Lemma 4 we saw that if −K(x, y) is c.p.s.d., then e−K(x,y) is
infinitely divisible. For K2(x, y) in Lemma 3,

e−K2(x,y) =

{
(Γ(y)Γ(x) )

1
x−y (x �= y)

e−
Γ′(x)
Γ(x) (x = y)

is infinitely divisible. Since Γ(x+ 1) = xΓ(x),

Γ′(1)

Γ(1)
= −γ,

Γ′(m+ 1)

Γ(m+ 1)
= −γ + 1 + · · ·+ 1

m
,
Γ(n)

Γ(m)
=

(n− 1)!

(m− 1)!
.

The following (n+1)× (n+1) matrix is therefore not only p.s.d. but also infinitely
divisible:

(
e−K2(i,j)

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

eγ ( 1!1! )
−1 (2!)−

1
2 (3!)−

1
3 · · · (n!)−

1
n

( 1!1! )
−1 eγ−1 ( 2!1! )

−1 ( 3!1! )
− 1

2 · · · (n!1! )
− 1

n−1

(2!)−
1
2 ( 2!1! )

−1 eγ−1− 1
2 ( 3!2! )

−1 · · · (n!2! )
− 1

n−2

(3!)−
1
3 ( 3!1! )

− 1
2 ( 3!2! )

−1 eγ−1− 1
2−

1
3 · · · (n!3! )

− 1
n−3

...
...

...
...

. . .
...

(n!)−
1
n (n!1! )

− 1
n−1 (n!2! )

− 1
n−2 (n!3! )

− 1
n−3 · · · eγ−1− 1

2−···− 1
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since Γ−1(z) is holomorphic on C\(−∞,Γ(α)] and a Pick function, by Herglotz’s
theorem Γ−1(x) has the following integral representation with the Borel measure
μ(t) ([4], [8], [12]):

Corollary 6.

(2.1) Γ−1(x) = a+ bx+

∫ Γ(α)

−∞
(

1

x− t
− t

t2 + 1
)dμ(t),

where
∫ Γ(α)

−∞
1

t2+1dμ(t) < ∞, and a, b are real numbers and b � 0.

Question. How can we extend the inverse function of the restricted function of
Γ(x) to (0, α)?
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[6] A. Koranyi, On a theorem of Löwner and its connections with resolvents of selfadjoint trans-

formations, Acta Sci. Math. 17(1956)63–70. MR0082656 (18:588c)
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