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SINGULAR ORDINARY DIFFERENTIAL EQUATIONS

HOMOGENEOUS OF DEGREE 0 NEAR A CODIMENSION 2 SET

D. BRESCH, B. DESJARDINS, AND E. GRENIER

(Communicated by Walter Craig)

Abstract. This paper deals with an example of a class of ordinary differential
equations which are singular near a codimension 2 set with a homogeneous
singularity of degree 0. Under some structural assumptions, we prove that for
almost all initial data there exists a unique global solution.

1. Introduction

This paper deals with a simple example of a class of ordinary differential equa-
tions which are singular on a manifold of codimension 2, the singularity being
homogeneous of degree 0 near this singularity.

Let H be a Hilbert space. Let Π denote the orthogonal projection on a given
two-dimensional plane P . Let xh = Πx and let xv = x−Πx. Note that x = xh+xv.
By a slight abuse of notation we shall say that x = (xh, xv), xh and xv referring
to the “horizontal” and “vertical” components of x. We then identify the plane P
with C by choosing arbitrarily an orthonormal basis on P . This allows us to use
polar coordinates on P and thus to define the modulus r and argument θ of xh and
to use the notation xh = r exp(iθ).

Let φ be a smooth function defined on H × S1 (S1 being the unit circle). Then

(1) ẋ = φ
(
x,

xh

|xh|
)

is a dynamical system, singular on P⊥, orthogonal of P , which is of codimension
2. Moreover, this system is homogeneous of degree 0 in any direction orthogonal
to P⊥.

Under some assumptions on φ, we show global existence and uniqueness of a
solution for almost every initial data. Note that we only take care of the behavior
of t �→ x(t) near P⊥ and by a slight abuse of language we shall say that a solution
is global if it does not reach the singularity P⊥ in finite time.

2. Motivation

The toy model (1) mimics phenomena occurring for instance in the low Mach
number limit problem for non-isentropic flows governed by the Euler equations in
a periodic box. Such flows are described through a velocity field u, a density ρ
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implicitly given by a state law depending on the entropy S and the pressure p; see
[4]. After some change of variables, namely introducing q defined by p = p̄eεq with
p a prescribed constant and ε the low Mach number, the non-dimensional system
reads

a(∂tq + u · ∇q) +
1

ε
divu = 0,(2)

r(∂tu+ u · ∇u) +
1

ε
∇q = 0,(3)

∂tS + u · ∇S = 0,(4)

where a and r are two smooth functions of S and ε q. The singular limit consists
in letting the Mach number ε go to 0. Equations (2)–(3) may be written under the
compact form

∂tU
ε +Q(Sε)(Uε, Uε) +

1

ε
A(Sε)Uε = 0,

where Uε = (q, u) with Q(Sε)(·, ·) a quadratic form (in the concrete Euler case
(2)–(3), Q(Sε)(Uε, Uε) = u · ∇Uε), A(Sε) a matrix operator which is given by (6)
and Sε a scalar unknown given through a PDE of the form

∂tS
ε = F (Sε, Uε).

In the ill-prepared data case, namely when the initial data do not satisfy the
condition

(5) div u0 = 0, ∇p0 = 0,

an oscillatory limit with changing eigenvalues occurs. Indeed the eigenvalues and
the spectrum of the singular operator A, where

(6) A =
( 0 a−1div

r−1∇ 0

)
,

will depend on the solution itself. This leads to a complex problem, since eigenvalues
may cross. The wave equation, related to the operator A, may also be written under
the form

(7) ε∂ttψ − div (S−1∇ψ) = 0

where S is the entropy quantity; see [4] for more details.
For periodic in space boundary conditions, the filtering method (a clever “change

of variable”) has been pioneered by S. Schochet (see for instance [5]) for isentropic
compressible Euler equations, namely the case Sε ≡ 0, to justify the asymptotics
ε → 0 in the ill-prepared case. This allows us to get strong compactness on the new
unknown. However this approach fails in the case of non-isentropic fluids, since the
singular operator A depends on the solution Sε(t) itself. After filtration, namely
after an appropriate change of variable vε = Lε

app(−t)Uε through an approximate
resolvent Lε

app of the wave equation, the system may only be written under the
form

Lε
app(t)∂tv

ε = Q(Sε)(Lε
app(t)v

ε,Lε
app(t)v

ε) + Eε(t)Lε
app(t)v

ε

where Eε is an error term which is well defined away from the crossing eigenvalues
set and singular on it; see [2] for more details. The main difficulty in the general
study is then to prove, after defining appropriate infinite-dimension measures, that
for almost all initial data, the limit flow does not meet double eigenvalues and
crosses the resonance set transversally. Note that such a double eigenvalue set has
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been proven to be of codimension 2 in previous works. The previous equation has
the same form as the ODE

∂tφ+Q(φ) = R(x,
x−Πx

‖x−Πx‖
)
,

where Π is the orthogonal projection on a codimension 2 variety. This explains
the necessity of studying ODEs of the form (1). Our result will be used to treat
oscillatory limits with changing eigenvalues and particularly the low Mach number
limit for non-isentropic flows. The interested reader is referred to [2] for a complete
strategy explanation on such a topic. Note that another type of singular ordinary
differential equation occurring in fluid mechanics has been studied recently; see for
instance [1].

In the very special case of only one spatial dimension, the limit ε → 0 for non-
isentropic flow can be both calculated completely and justified; see [4]. In the
multi-dimensional case the formal calculation of the extra term in the limit, which
once again involves the spectral decomposition of the fast operator, assumes that
the spectrum of that fast operator is simple and non-resonant; see [3] for the viscous
case and [4] for the inviscid one. For certain finite-dimensional truncations of the
equations those assumptions can be shown to be generic and to ensure convergence
to the limit equations. This has been done in the paper [4].

3. Setup and main result

3.1. Notation. Let us first introduce some notation. We define ψ(xh, xv, θ) as the

argument of Πφ
(
(xh, xv), exp(iθ)

)
and ψ̃(xh, xv, θ) its modulus in such a way that

Πφ
(
(xh, xv), exp(iθ)

)
= ψ̃(xh, xv, θ) exp

(
iψ(xh, xv, θ)

)
.

Structural properties. We will assume that there exist an integer N0 > 0 and
N0 smooth functions of xh and xv, Θ1(xh, xv), . . . , ΘN0

(xh, xv), satisfying the
following properties:

(H1) For all x = (xh, xv) ∈ H, the equation in θ

ψ(xh, xv, θ) ∈ θ + πZ

has exactly N0 solutions Θ1(xh, xv) . . .ΘN0
(xh, xv).

(H2) For every j, the following sign condition holds for all x = (xh, xv) ∈ H:

∂θψ(xh, xv,Θj(xh, xv)) < 1.

Note that this implies that the solutions Θj are all simple.

(H3) ψ̃ does not vanish.

Note that, for ψ̃ = 1, (H1) implies that
{
(τ exp(iΘj(0, xv)), xv), τ > 0

}
is a

trajectory for

(8) ẋh = Πφ
(
(0, xv),

xh

|xh|
)
.

This trajectory goes to the singularity or leaves it, depending on its orientation. In
particular for some initial data we reach the singularity in finite time. The flow is
not defined everywhere, and we can only hope almost everywhere results.
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3.2. Main result. The main result of this paper is

Theorem 3.1 (Stable and unstable manifolds). Let us assume that (H1), (H2)
and (H3) hold true. Let x0 ∈ P⊥ and let ρ > 0. There exists a finite number of
manifolds Vk, of codimension 1, with boundary Σ, such that:

• For any initial data x1 in one of the manifolds Vk, the corresponding solu-
tion of (1) reaches Σ in finite time (in the past or in the future).

• For any initial data x1 in B(x0, ρ) outside all these manifold Vk, the cor-
responding solution of (1) reaches the boundary of B(x0, ρ) before Σ.

With this result one can define the flow Ψ(t) of this equation, flow which is
defined everywhere except on the manifolds Vk. The outline of the paper is as
follows. First we study a simplified two-dimensional equation

(9) ẏ = φ
( y

|y|
)

and then extend it by perturbation arguments to equations of the general form (1).

4. Study of systems of the form (9)

We first prove Theorem 3.1 in the particular case of systems of the form (9).
Note that (9) may be reduced to the study of a two-dimensional dynamical system,
with x ∈ C. First we turn to polar coordinates, define y = r exp(iθ) and make the
change of time defined by dτ/dtE = 1/r to get

dr

dτ
= rψ̃(θ) cos(ψ(θ)− θ),(10)

dθ

dτ
= ψ̃(θ) sin(ψ(θ)− θ).(11)

Remark that ṙ has constant sign close to each side of Θj . Note that r as a function
of t may vanish in finite time, whereas r as a function of τ never vanishes, as is clear
from (10). Moreover (11) does not involve r, which greatly simplifies the analysis

of (9). Note also that ψ̃ is always positive. Therefore the dynamics of (11) is given
by assumption (H1). There exist N0 fixed points Θj(xv) which are stable provided

(ψ′(Θj)− 1) cos(ψ(Θj)−Θj) < 0

and unstable if (ψ′(Θj)− 1) cos(ψ(Θj)−Θj) > 0 (the null case being ruled out by
(H2)).

Moreover the Θj are the only fixed points of (11) and the dynamics of solutions
t �→ θ(t) of (11) is very simple: t �→ θ(t) goes in a monotonic way from some Θj(xv)
(unstable equilibrium, limit value as τ goes to −∞) to Θj−1(xv) or Θj+1(xv) as τ
goes to +∞ (stable equilibria). All the solutions of (11) are global in the τ variable
and go from an unstable Θj to a close stable one.

It then remains to solve (10). The behavior depends on the sign of

ψ̃(θ) cos(ψ(θ)− θ).

As ψ̃(θ) > 0 and as ψ′(Θj) < 1, ψ̃(θ) cos(ψ(θ) − θ) is positive if Θj is stable and
negative if Θj is unstable.

Therefore solutions of (9) are global (except if θ constantly equals some of the
Θj where the solution goes to the singularity in finite time in the future or in the
past) and are asymptotic in +∞ to some stable Θj and in −∞ to some instable
Θj .
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The phase portrait can be described as follows:

• There exist N0 particular solutions which are straight lines, going to or
coming from the origin in finite positive or negative times.

• All the other trajectories are global in time and are asymptotic to two of
the particular solutions as time goes to +∞ or −∞.

Theorem 3.1 is then straightforward. �
Note that hypothesis (H2) is crucial. If we assume ψ′(Θ′) > 1, then the conclu-

sion is completely changed: all the trajectories come from the singularity and go
back to the singularity in finite time, except for θ = Θj . In this case, almost all the
trajectories blow up in finite time.

5. Trajectories near the singular set

In this section we will describe the behavior of solutions near the singular set.
Let x0 = (0, x0

v) be a point of P⊥. Locally the geometry of the flow is described by
the angles Θj(x

0
v) which split the space into angular sectors

Ωj = {Θj(x
0
v) < θ < Θj+1(x

0
v)}.

If there were no xh dependence of the flow, the angles Ωj would be invariant under
the flow as in the previous section. This is not the case here, and we have to be
more precise in the spatial description.

5.1. Domain decomposition. Let α > 0 and η > 0 be small. Then by continuity
there exist angles θ+j and θ−j such that

(12)
∣∣∣ψ̃(xh, xv, θ) sin(ψ(xh, xv, θ)− θ)

∣∣∣ ≥ α

when |xh|+ |xv − x0
v| < 2η and Θj(x

0
v) < θ+j < θ < θ−j+1 < Θj+1(x

0
v).

Let us now introduce the following sets, for ε chosen later on with ε < η:

Ωj(ε, η) =
{
(xh, xv, θ) | |xh| < ε, |xv − x0

v| < η, θ−j < θ < θ+j

}
,

Σj(ε, η) =
{
(xh, xv, θ) | |xh| < ε, |xv − x0

v| < η, θ+j < θ < θ−j+1

}
,

and

Ωv(ε, η) =
{
(xh, xv, θ) | |xh| < ε, |xv − x0

v| < η
}
.

Note that Ωv(ε, η) is the union of the Ωj(ε, η) and Σj(ε, η) and of their boundaries.
The Ωj(ε, η) will be the neighborhood of the stable and unstable manifolds.

5.2. Study of the trajectory. Let us fix the ideas that Θj is unstable and Θj+1

is stable (the discussion is similar if the stabilities are interchanged). Let x(t) be a
trajectory with x(0) ∈ Σj(ε, η/2). This subsection will be divided into three parts.
In a first part, we prove the following:

Claim. If ε is small enough, there exist m > 0 and t+ such that if t ∈ [t+, t+ +m[,
then x(t) ∈ Ωj+1(η, η). Analogously, there exists t− such that if t ∈]t− − m, t−],
then x(t) ∈ Ωj(η, η). Moreover, for |t| large enough, the trajectory Ωv(η, η) exits
in finite time.

In the second part we give bounds on r(t) allowing us in the last part to study
the dynamic on Ωj as a standard dynamical system.
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Proof of the Claim. Let x(t) be a solution of (1), such that x(0) = (xh(0), xv(0))
with xh(0) = r(0) exp(iθ(0)) with r(0) > 0. Using polar coordinates and introduc-
ing again the change of time variable, we get

(13) ẋv = r(Id−Π)φ
(
(xh, xv),

xh

|xh|
)
,

with

ṙ = rψ̃(xh, xv, θ) cos(ψ(xh, xv, θ)− θ),(14)

θ̇ = ψ̃(xh, xv, θ) sin(ψ(xh, xv, θ)− θ).(15)

Let ]a, b[ be the maximal time interval containing 0 such that x(t) ∈ Ωv(η, η) for
t ∈]a, b[. By definition of θ+j and θ−j+1, θ(t) is increasing as long as it belongs to

Ωv(η, η)−Ωj(η, η)−Ωj+1(η, η). Let ]a1, b1[ be the maximum time interval containing
0 such that θ+j < θ(t) < θ−j+1. Of course a ≤ a1 < b1 ≤ b.

If a < a1, then for t = a1, x(t) ∈ Ωj ∩ Ωv and therefore x(t) ∈ Ωj ∩ Ωv for any
a < t < a1. Similarly, if b > b1, then for any b1 < t < b, x(t) ∈ Ωj+1 ∩ Ωv.

Note that, using (15) and (12), we can bound b1 − a1 by

(16) b1 − a1 ≤ θ3 − θ2
α

,

where θ2 and θ3 correspond respectively to the angle at time t = a1 and t = b1.
This implies that b1 and −a1 are less than (θ3 − θ2)/α. Moreover

(17)
d

dτ
log r = ψ̃(xh, xv, θ) cos(ψ(xh, xv, θ)− θ).

Note that on Ωv, ψ̃ is bounded by some constant C0. Hence for a1 < τ < b1,
integrating (17) with respect to τ and using (16), we get

(18) exp(−C0α
−1(θ3 − θ2)) ≤

r(τ )

r(0)
≤ exp(C0α

−1(θ3 − θ2)).

Therefore if

(19) ε <
η

2
exp(−2C0α

−1(θ3 − θ2)),

using the condition that r(0) < ε and (18), r(τ ) remains smaller than η for a1 <
τ < b1. Hence:

The solution cannot leave Ωv at τ = a1 or τ = b1
at the boundary |xh| = η.

Using now (18)–(19), r(τ ) remains smaller than
η

2
exp(−C0α

−1(θ3− θ2)). Thus,

using (13), since |xv − x0
v| < η:

The trajectory cannot leave Ωv at its horizontal boundary.

Indeed

|xv − x0
v| ≤

η C0

2
b1 exp(−C0α

−1(θ3 − θ2))

and

b1 ≤ (θ3 − θ2)/α.
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Therefore

The trajectory goes from Ωj(η, η) to Ωj+1(η, η).

This ends the proof of the Claim. �

Bounds on r(t). Let us go back to the genuine time t. On Ωj(η, η) and Ωj+1(η, η),
provided α is small enough, | cos(ψ(xh, xv, θ)− θ)| is larger than 1/2. Therefore

d

dt
|xh(t)|2 = 2r(t)ṙ(t)

is bounded away from 0 by r(t)min ψ̃/2. Therefore, as long as r(t) remains in Ωv,
for t > b1 we have

r(b1) + γ1(t− b1) ≤ r(t) ≤ r(b1) + γ2(t− b1)

for some non-negative constants γ1, γ2. A similar result is true for t < a1.

Dynamics on Ωj. As ψ̃ �= 0 and cos(ψ(xh, xv, θ) − θ) �= 0, we change time on

(13)–(15) through dτ̃/dτ = ψ̃ cos(ψ(xh, xv, θ)− θ) to get

ẋv =
r

ψ̃ cos(ψ(xh, xv, θ)− θ)
(1−Π)φ

(
xh, xv, r

)
,(20)

ṙ = r,(21)

θ̇ = tan(ψ(xh, xv, θ)− θ)(22)

with xh = (r cos θ, r sin θ). Note that now, due to the previous part (see the Claim
and its proof), the dynamics takes place in Ωj , where equations (20)–(22) are
not singular. Points of the form (xv, 0,Θj(0, xv)) are equilibrium points of (20)–
(22) and form codimension 2 unstable equilibrium points (or stable, depending
on the parity of j). Therefore by classical arguments, (20)–(22) admit a related
unstable manifold. Using the description of the trajectory detailed in the previous
paragraphs, we see that this unstable manifold is exactly what we wanted. Note
that now since ṙ > 0 (see bounds on r previously given), we get the dynamics on
Ωj as a standard dynamical system.
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