From joint convexity of quantum relative entropy to a concavity theorem of Lieb

Author:
Joel A. Tropp

Journal:
Proc. Amer. Math. Soc. **140** (2012), 1757-1760

MSC (2010):
Primary 52A41

DOI:
https://doi.org/10.1090/S0002-9939-2011-11141-9

Published electronically:
August 4, 2011

MathSciNet review:
2869160

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper provides a succinct proof of a 1973 theorem of Lieb that establishes the concavity of a certain trace function. The development relies on a deep result from quantum information theory, the joint convexity of quantum relative entropy, as well as a recent argument due to Carlen and Lieb.

**[And79]**T. Ando,*Concavity of certain maps on positive definite matrices and applications to Hadamard products*, Linear Algebra Appl.**26**(1979), 203-241. MR**535686 (80f:15023)****[Bha97]**R. Bhatia,*Matrix analysis*, Graduate Texts in Mathematics, no. 169, Springer, Berlin, 1997. MR**1477662 (98i:15003)****[CL08]**E. A. Carlen and E. H. Lieb,*A Minkowski-type trace inequality and strong subadditivity of quantum entropy II: Convexity and concavity*, Lett. Math. Phys.**83**(2008), 107-126. MR**2379699 (2009m:47041)****[DT07]**I. S. Dhillon and J. A. Tropp,*Matrix nearness problems with Bregman divergences*, SIAM J. Matrix Anal. Appl.**29**(2007), no. 4, 1120-1146. MR**2369287 (2008i:90050)****[Eff09]**E. G. Effros,*A matrix convexity approach to some celebrated quantum inequalities*, Proc. Natl. Acad. Sci. USA**106**(2009), no. 4, 1006-1008. MR**2475796 (2010a:81028)****[Eps73]**H. Epstein,*Remarks on two theorems of E. Lieb*, Comm. Math. Phys.**31**(1973), 317-325. MR**0343073 (49:7817)****[Han06]**F. Hansen,*Extensions of Lieb's concavity theorem*, J. Statist. Phys.**124**(2006), no. 1, 87-101. MR**2256619 (2008k:47040)****[Lie73]**E. H. Lieb,*Convex trace functions and the Wigner-Yanase-Dyson conjecture*, Adv. Math.**11**(1973), 267-288. MR**0332080 (48:10407)****[Lin74]**G. Lindblad,*Expectations and entropy inequalities for finite quantum systems*, Comm. Math. Phys.**39**(1974), 111-119. MR**0363351 (50:15789)****[Pet94]**D. Petz,*A survey of certain trace inequalities*, Functional analysis and operator theory (Warsaw), Banach Center Publications, vol. 30, Polish Acad. Sci., 1994, pp. 287-298. MR**1285615 (95c:15038)****[PW78]**W. Pusz and S. L. Woronowicz,*Form convex functions and the WYDL and other inequalities*, Lett. Math. Phys.**2**1977/78, 505-512. MR**513118 (80j:47019)****[Rus02]**M. B. Ruskai,*Inequalities for quantum entropy: A review with conditions for equality*, J. Math. Phys.**43**(2002), no. 9, 4358-4375. MR**1924445 (2004e:82007)****[Rus05]**-,*Erratum: Inequalities for quantum entropy: A review with conditions for equality*[J. Math. Phys. 43, 4358 (2002)], J. Math. Phys.**46**(2005), no. 1, 0199101. MR**2113776 (2005h:82010)****[Tro10]**J. A. Tropp,*User-friendly tail bounds for sums of random matrices*, ACM Report 2010-01, California Inst. Tech., Pasadena, CA, April 2010.**[Uhl77]**A. Uhlmann,*Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory*, Comm. Math. Phys.**54**(1977), 21-32. MR**0479224 (57:18671)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
52A41

Retrieve articles in all journals with MSC (2010): 52A41

Additional Information

**Joel A. Tropp**

Affiliation:
Department of Computing and Mathematical Sciences, California Institute of Technology, 1200 E. California Boulevard, MC 305-16, Pasadena, California 91125

DOI:
https://doi.org/10.1090/S0002-9939-2011-11141-9

Received by editor(s):
January 2, 2011

Received by editor(s) in revised form:
January 4, 2011

Published electronically:
August 4, 2011

Communicated by:
Marius Junge

Article copyright:
© Copyright 2011
American Mathematical Society