Rigidity of stable cylinders in three-manifolds

Author:
José M. Espinar

Journal:
Proc. Amer. Math. Soc. **140** (2012), 1769-1775

MSC (2010):
Primary 53A10; Secondary 53C24, 49Q05

DOI:
https://doi.org/10.1090/S0002-9939-2011-11197-3

Published electronically:
August 24, 2011

MathSciNet review:
2869162

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we show how the existence of a certain stable cylinder determines (locally) the ambient manifold where it is immersed. This cylinder has to verify a *bifurcation phenomenon*; we make this explicit in the introduction. In particular, the existence of such a stable cylinder implies that the ambient manifold has infinite volume.

**1.**H. Bray, S. Brendle and A. Neves: Rigidity of area-minimizing two-spheres in three-manifolds.*Comm. Anal. Geom.***18**(2010), no. 4, 821-830. MR**2765731****2.**P. Castillon: An inverse spectral problem on surfaces,*Comment. Math. Helv.***81**(2006), no. 2, 271-286. MR**2225628 (2007b:58042)****3.**J.M. Espinar and H. Rosenberg: A Colding-Minicozzi stability inequality and its applications.*Trans. A.M.S.***363**(2011), 2447-2465. MR**2763722****4.**D. Fischer-Colbrie: On complete minimal surfaces with finite Morse index in three manifolds,*Invent. Math.***82**(1985), 121-132. MR**808112 (87b:53090)****5.**D. Fischer-Colbrie and R. Schoen: The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature,*Comm. Pure Applied Math.***33**(1980), 199-211. MR**562550 (81i:53044)****6.**T. Klotz and R. Osserman: Complete surfaces in with constant mean curvature,*Comment. Math. Helv.***41**(1966-67), 313-318. MR**0211332 (35:2213)****7.**S. Montiel: Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds,*Indiana Univ. Math. J.***48**(1999), 711-748. MR**1722814 (2001f:53131)****8.**J. M. Manzano, J. Pérez and M. M. Rodríguez: Parabolic stable surfaces with constant mean curvature. To appear in*Calc. Var. Partial Differential Equations*.**9.**W. Meeks, J. Pérez and A. Ros: Stable constant mean curvature surfaces,*Handbook of Geometric Analysis*, volume 1 (2008), pages 301-380. International Press, edited by Lizhen Ji, Peter Li, Richard Schoen and Leon Simon. MR**2483369 (2009k:53016)****10.**M. Reiris: Geometric relations of stable minimal surfaces and applications. Preprint.**11.**R. Schoen and S.T. Yau: Harmonic maps and the topology of stable hypersurfaces and manifolds of nonnegative Ricci curvature,*Comm. Math. Helv.***39**(1976), 333-341. MR**0438388 (55:11302)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
53A10,
53C24,
49Q05

Retrieve articles in all journals with MSC (2010): 53A10, 53C24, 49Q05

Additional Information

**José M. Espinar**

Affiliation:
Departamento de Geometría y Topología, Universidad de Granada, 18071 Granada, Spain

Email:
jespinar@ugr.es

DOI:
https://doi.org/10.1090/S0002-9939-2011-11197-3

Keywords:
Stable surfaces,
bifurcation

Received by editor(s):
August 2, 2010

Received by editor(s) in revised form:
January 14, 2011

Published electronically:
August 24, 2011

Additional Notes:
The author is partially supported by the Spanish MEC-FEDER Grant MTM2010-19821 and Regional J. Andalucia Grants P06-FQM-01642 and FQM325.

Communicated by:
Michael Wolf

Article copyright:
© Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.