Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Exact spectral asymptotics on the Sierpinski gasket

Author: Robert S. Strichartz
Journal: Proc. Amer. Math. Soc. 140 (2012), 1749-1755
MSC (2010): Primary 28A80
Published electronically: September 22, 2011
MathSciNet review: 2869159
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: One of the ways that analysis on fractals is more complicated than analysis on manifolds is that the asymptotic behavior of the spectral counting function $ N(t)$ has a power law modulated by a nonconstant multiplicatively periodic function. Nevertheless, we show that for the Sierpinski gasket it is possible to write an exact formula, with no remainder term, valid for almost every $ t$. This is a stronger result than is valid on manifolds.

References [Enhancements On Off] (What's this?)

  • [B-T] N. Bajorin, T. Chen, A. Dagan, C. Emmons, M. Hussein, M. Khalil, P. Mody, B. Steinhurst, and A. Teplyaev.
    Vibration modes of $ 3n$-gaskets and other fractals.
    J. Phys. A, 41(1):015101, 21 pp., 2008. MR 2450694 (2010a:28008)
  • [B-T2] -,
    Vibration spectra of finitely ramified, symmetric fractals.
    Fractals, 16(3):243-258, 2008. MR 2451619 (2009k:47098)
  • [BK] Martin T. Barlow and Jun Kigami.
    Localized eigenfunctions of the Laplacian on p.c.f. self-similar sets.
    J. London Math. Soc. (2), 56(2):320-332, 1997. MR 1489140 (99b:35162)
  • [BS] Brian Bockelman and Robert S. Strichartz.
    Partial differential equations on products of Sierpinski gaskets.
    Indiana Univ. Math. J., 56(3):1361-1375, 2007. MR 2333476 (2008h:31012)
  • [FS] M. Fukushima and T. Shima.
    On a spectral analysis for the Sierpiński gasket.
    Potential Anal., 1(1):1-35, 1992. MR 1245223 (95b:31009)
  • [GRS] Michael Gibbons, Arjun Raj, and Robert S. Strichartz.
    The finite element method on the Sierpinski gasket.
    Constr. Approx., 17(4):561-588, 2001. MR 1845268 (2002i:28010)
  • [K1] Jun Kigami.
    Distributions of localized eigenvalues of Laplacians on post critically finite self-similar sets.
    J. Funct. Anal., 156(1):170-198, 1998. MR 1632976 (99g:35096)
  • [K2] Jun Kigami.
    Analysis on fractals, volume 143 of Cambridge Tracts in Mathematics.
    Cambridge University Press, Cambridge, 2001. MR 1840042 (2002c:28015)
  • [KL] Jun Kigami and Michel L. Lapidus.
    Weyl's problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals.
    Comm. Math. Phys., 158(1):93-125, 1993. MR 1243717 (94m:58225)
  • [L] Michel L. Lapidus.
    Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl-Berry conjecture.
    Trans. Amer. Math. Soc., 325(2):465-529, 1991. MR 994168 (91j:58163)
  • [Sh] Tadashi Shima.
    On eigenvalue problems for Laplacians on p.c.f. self-similar sets.
    Japan J. Indust. Appl. Math., 13(1):1-23, 1996. MR 1377456 (97f:28028)
  • [S1] Robert S. Strichartz.
    Fractafolds based on the Sierpiński gasket and their spectra.
    Trans. Amer. Math. Soc., 355(10):4019-4043 (electronic), 2003. MR 1990573 (2004b:28013)
  • [S2] Robert S. Strichartz.
    Function spaces on fractals.
    J. Funct. Anal., 198(1):43-83, 2003. MR 1962353 (2003m:46058)
  • [S3] Robert S. Strichartz.
    Laplacians on fractals with spectral gaps have nicer Fourier series.
    Math. Res. Lett., 12(2-3):269-274, 2005. MR 2150883 (2006e:28013)
  • [S4] Robert S. Strichartz.
    Differential equations on fractals.
    Princeton University Press, Princeton, NJ, 2006.
    A tutorial. MR 2246975 (2007f:35003)
  • [S5] Robert S. Strichartz.
    Waves are recurrent on noncompact fractals.
    J. Fourier Anal. Appl., 16(1):148-154, 2010. MR 2587585 (2011a:35540)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 28A80

Retrieve articles in all journals with MSC (2010): 28A80

Additional Information

Robert S. Strichartz
Affiliation: Department of Mathematics, Cornell University, Ithaca, New York 14853

Keywords: Sierpinski gasket, Laplacians on fractals, spectral asymptotics
Received by editor(s): January 28, 2011
Published electronically: September 22, 2011
Additional Notes: Research supported in part by National Science Foundation grant DMS-0652440
Communicated by: Michael T. Lacey
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society