On a class of magnetic Schrödinger operators with discrete spectrum
Author:
N. Anghel
Journal:
Proc. Amer. Math. Soc. 140 (2012), 1613-1616
MSC (2010):
Primary 35J10; Secondary 35P05, 47F05, 81V10
DOI:
https://doi.org/10.1090/S0002-9939-2011-11517-X
Published electronically:
December 23, 2011
MathSciNet review:
2869145
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We introduce a class of magnetic Schrödinger operators in which exhibit pure point spectrum in a fashion that is actually easy to check. This class is an adequate generalization of the more familiar two-dimensional setting, and the proof we give for its spectral discreteness is novel, based on the use of Euclidean Dirac operators coupled to vector potentials.
- [AHS]
J. Avron, I. Herbst, B. Simon, Schrödinger Operators with Magnetic Fields, I. General Interactions, Duke Math. J.
, 847-883 (1978). MR 518109 (80k:35054)
- [B] H. Baum, Spin-Strukturen und Dirac-Operatoren über Pseudoriemannschen Mannigfaltigkeiten, Teubner Verlagsgesellschaft, Leipzig, 1981. MR 701244 (84m:58160)
- [D]
A. Dufresnoy, Un Example de Champ Magnétique dans
, Duke Math. J.
, 729-734 (1983). MR 714827 (84k:78005)
- [HM]
B. Helffer, A. Mohamed, Caractérisation du Spectre Essentiel de l'Opérateur de Schrödinger avec un Champ Magnétique, Ann. Inst. Fourier
, 95-112 (1988). MR 949012 (90d:35215)
- [I]
A. Iwatsuka, Magnetic Schrödinger Operators with Compact Resolvent, J. Math. Kyoto Univ.
, 357-374 (1986). MR 857223 (87j:35287)
- [KS]
V. Kondratiev, M. Shubin, Discreteness of Spectrum for the Magnetic Schrödinger Operators, Commun. Partial Diff. Eqns.
, 477-525 (2002). MR 1900553 (2003f:35058)
- [LM] B. Lawson, M-L. Michelsohn, Spin Geometry, Princeton Univ. Press, Princeton, NJ, 1989. MR 1031992 (91g:53001)
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35J10, 35P05, 47F05, 81V10
Retrieve articles in all journals with MSC (2010): 35J10, 35P05, 47F05, 81V10
Additional Information
N. Anghel
Affiliation:
Department of Mathematics, University of North Texas, Denton, Texas 76203
Email:
anghel@unt.edu
DOI:
https://doi.org/10.1090/S0002-9939-2011-11517-X
Keywords:
Schrödinger operator,
magnetic field,
discrete spectrum,
Dirac operator
Received by editor(s):
January 5, 2011
Published electronically:
December 23, 2011
Communicated by:
Varghese Mathai
Article copyright:
© Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.