Intrinsic ergodicity of partially hyperbolic diffeomorphisms with a hyperbolic linear part

Author:
Raúl Ures

Journal:
Proc. Amer. Math. Soc. **140** (2012), 1973-1985

MSC (2010):
Primary 37D30; Secondary 37D25, 37D35

DOI:
https://doi.org/10.1090/S0002-9939-2011-11040-2

Published electronically:
October 7, 2011

MathSciNet review:
2888185

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that any (absolutely) partially hyperbolic diffeomorphism of homotopic to a hyperbolic automorphism is intrinsically ergodic; that is, it has a unique entropy maximizing measure .

**1.**R. Bowen, Markov partitions for Axiom diffeomorphisms.*Amer. J. Math.*92 (1970), 725-747. MR**0277003 (43:2740)****2.**M. Brin, On dynamical coherence,*Ergodic Theory Dynam. Systems*23 (2003), 395-401. MR**1972227 (2004a:37037)****3.**M. Brin, D. Burago, S. Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus,*J. Mod. Dyn.*3 (2009), 1-11. MR**2481329 (2010b:37084)****4.**K. Burns, F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Talitskaya, R. Ures, Density of accessibility for partially hyperbolic diffeomorphisms with one-dimensional center.*Discrete Contin. Dyn. Syst.*22 (2008), no. 1-2, 75-88. MR**2410948 (2010a:37054)****5.**J. Buzzi, T. Fisher, M. Sambarino, C. Vasquez, Maximal Entropy Measures for Certain Partially Hyperbolic, Derived from Anosov Systems, to appear in*Ergodic Theory Dynam. Systems*.**6.**W. Cowieson, L.-S. Young, SRB measures as zero-noise limits,*Ergodic Theory Dynam. Systems*25 (2005), no. 4, 1115-1138. MR**2158399 (2006f:37030)****7.**L. J. Díaz, T. Fisher, Symbolic extensions for partially hyperbolic diffeomorphisms,*Discrete Contin. Dyn. Syst*. 29 (2011), no. 4, 1419-1441.**8.**J. Franks, Anosov diffeomorphisms. Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968) pp. 61-93, Amer. Math. Soc., Providence, R.I., 1970. MR**0271990 (42:6871)****9.**A. Hammerlindl, Leaf conjugacies of the torus, to appear in*Ergodic Theory Dynam. Systems*, and PhD Thesis, University of Toronto, 2009. MR**2736718****10.**Y. Hua, R. Saghin, Z. Xia, Topological entropy and partially hyperbolic diffeomorphisms.*Ergodic Theory Dynam. Systems*28 (2008), no. 3, 843-862. MR**2422018 (2009d:37050)****11.**A. Katok, L. Mendoza, Dynamical systems with nonuniformly hyperbolic behavior. Supplement to*Introduction to the Modern Theory of Dynamical Systems*, by A. Katok and B. Hasselblatt, Cambridge University Press, 1995. MR**1326374 (96c:58055)****12.**F. Ledrappier, P. Walters, A relativised variational principle for continuous transformations.*J. Lond. Math. Soc.*(2) 16 (1977), no. 3, 568-576. MR**0476995 (57:16540)****13.**R. Mañé, Contributions to the stability conjecture.*Topology*17 (1978), 383-396. MR**516217 (84b:58061)****14.**G. Margulis, On some aspects of the theory of Anosov systems. With a survey by Richard Sharp: Periodic orbits of hyperbolic flows, Springer Monographs in Math., Springer-Verlag, 2004. MR**2035655 (2004m:37049)****15.**M. Misiurewicz, Diffeomorphism without any measure with maximal entropy,*Bull. Acad. Pol. Acad. Sci. Math.*21 (1973), 903-910. MR**0336764 (49:1537)****16.**S. Newhouse, Continuity properties of entropy.*Ann. of Math.*(2) 129 (1989), no. 2, 215-235. MR**986792 (90f:58108)****17.**S. Newhouse, L. S. Young, Dynamics of certain skew products, Geometric dynamics (Rio de Janeiro, 1981), 611-629, Lecture Notes in Math., 1007, Springer, Berlin, 1983. MR**730289 (85j:58096)****18.**F. Rodriguez Hertz, M. Rodriguez Hertz, A. Tahzibi, R. Ures, Maximizing measures for partially hyperbolic systems with compact center leaves, to appear in*Ergodic Theory Dynam. Systems*.**19.**F. Rodriguez Hertz, M. A. Rodriguez Hertz, R. Ures, A non-dynamical coherent example in , preprint.**20.**M. Shub, Topologically transitive diffeomorphisms on . Lect. Notes in Math. 206 (1971), 39.**21.**B. Weiss, Intrinsically ergodic systems.*Bull. Amer. Math. Soc.*76 (1970), 1266-1269. MR**0267076 (42:1978)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
37D30,
37D25,
37D35

Retrieve articles in all journals with MSC (2010): 37D30, 37D25, 37D35

Additional Information

**Raúl Ures**

Affiliation:
IMERL-Facultad de Ingeniería, Universidad de la República, CC 30 Montevideo, Uruguay

Email:
ures@fing.edu.uy

DOI:
https://doi.org/10.1090/S0002-9939-2011-11040-2

Received by editor(s):
October 31, 2010

Received by editor(s) in revised form:
February 1, 2011

Published electronically:
October 7, 2011

Communicated by:
Bryna Kra

Article copyright:
© Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.