Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Intrinsic ergodicity of partially hyperbolic diffeomorphisms with a hyperbolic linear part


Author: Raúl Ures
Journal: Proc. Amer. Math. Soc. 140 (2012), 1973-1985
MSC (2010): Primary 37D30; Secondary 37D25, 37D35
DOI: https://doi.org/10.1090/S0002-9939-2011-11040-2
Published electronically: October 7, 2011
MathSciNet review: 2888185
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that any (absolutely) partially hyperbolic diffeomorphism $ f$ of $ \mathbb{T}^3$ homotopic to a hyperbolic automorphism $ A$ is intrinsically ergodic; that is, it has a unique entropy maximizing measure $ \mu $.


References [Enhancements On Off] (What's this?)

  • 1. R. Bowen, Markov partitions for Axiom $ {\rm A}$ diffeomorphisms. Amer. J. Math. 92 (1970), 725-747. MR 0277003 (43:2740)
  • 2. M. Brin, On dynamical coherence, Ergodic Theory Dynam. Systems 23 (2003), 395-401. MR 1972227 (2004a:37037)
  • 3. M. Brin, D. Burago, S. Ivanov, Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus, J. Mod. Dyn. 3 (2009), 1-11. MR 2481329 (2010b:37084)
  • 4. K. Burns, F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Talitskaya, R. Ures, Density of accessibility for partially hyperbolic diffeomorphisms with one-dimensional center. Discrete Contin. Dyn. Syst. 22 (2008), no. 1-2, 75-88. MR 2410948 (2010a:37054)
  • 5. J. Buzzi, T. Fisher, M. Sambarino, C. Vasquez, Maximal Entropy Measures for Certain Partially Hyperbolic, Derived from Anosov Systems, to appear in Ergodic Theory Dynam. Systems.
  • 6. W. Cowieson, L.-S. Young, SRB measures as zero-noise limits, Ergodic Theory Dynam. Systems 25 (2005), no. 4, 1115-1138. MR 2158399 (2006f:37030)
  • 7. L. J. Díaz, T. Fisher, Symbolic extensions for partially hyperbolic diffeomorphisms, Discrete Contin. Dyn. Syst. 29 (2011), no. 4, 1419-1441.
  • 8. J. Franks, Anosov diffeomorphisms. Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968) pp. 61-93, Amer. Math. Soc., Providence, R.I., 1970. MR 0271990 (42:6871)
  • 9. A. Hammerlindl, Leaf conjugacies of the torus, to appear in Ergodic Theory Dynam. Systems, and PhD Thesis, University of Toronto, 2009. MR 2736718
  • 10. Y. Hua, R. Saghin, Z. Xia, Topological entropy and partially hyperbolic diffeomorphisms. Ergodic Theory Dynam. Systems 28 (2008), no. 3, 843-862. MR 2422018 (2009d:37050)
  • 11. A. Katok, L. Mendoza, Dynamical systems with nonuniformly hyperbolic behavior. Supplement to Introduction to the Modern Theory of Dynamical Systems, by A. Katok and B. Hasselblatt, Cambridge University Press, 1995. MR 1326374 (96c:58055)
  • 12. F. Ledrappier, P. Walters, A relativised variational principle for continuous transformations. J. Lond. Math. Soc. (2) 16 (1977), no. 3, 568-576. MR 0476995 (57:16540)
  • 13. R. Mañé, Contributions to the stability conjecture. Topology 17 (1978), 383-396. MR 516217 (84b:58061)
  • 14. G. Margulis, On some aspects of the theory of Anosov systems. With a survey by Richard Sharp: Periodic orbits of hyperbolic flows, Springer Monographs in Math., Springer-Verlag, 2004. MR 2035655 (2004m:37049)
  • 15. M. Misiurewicz, Diffeomorphism without any measure with maximal entropy, Bull. Acad. Pol. Acad. Sci. Math. 21 (1973), 903-910. MR 0336764 (49:1537)
  • 16. S. Newhouse, Continuity properties of entropy. Ann. of Math. (2) 129 (1989), no. 2, 215-235. MR 986792 (90f:58108)
  • 17. S. Newhouse, L. S. Young, Dynamics of certain skew products, Geometric dynamics (Rio de Janeiro, 1981), 611-629, Lecture Notes in Math., 1007, Springer, Berlin, 1983. MR 730289 (85j:58096)
  • 18. F. Rodriguez Hertz, M. Rodriguez Hertz, A. Tahzibi, R. Ures, Maximizing measures for partially hyperbolic systems with compact center leaves, to appear in Ergodic Theory Dynam. Systems.
  • 19. F. Rodriguez Hertz, M. A. Rodriguez Hertz, R. Ures, A non-dynamical coherent example in $ \mathbb{T}^3$, preprint.
  • 20. M. Shub, Topologically transitive diffeomorphisms on $ \mathbb{T}^4$. Lect. Notes in Math. 206 (1971), 39.
  • 21. B. Weiss, Intrinsically ergodic systems. Bull. Amer. Math. Soc. 76 (1970), 1266-1269. MR 0267076 (42:1978)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37D30, 37D25, 37D35

Retrieve articles in all journals with MSC (2010): 37D30, 37D25, 37D35


Additional Information

Raúl Ures
Affiliation: IMERL-Facultad de Ingeniería, Universidad de la República, CC 30 Montevideo, Uruguay
Email: ures@fing.edu.uy

DOI: https://doi.org/10.1090/S0002-9939-2011-11040-2
Received by editor(s): October 31, 2010
Received by editor(s) in revised form: February 1, 2011
Published electronically: October 7, 2011
Communicated by: Bryna Kra
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society