Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on the cone restriction conjecture


Authors: Changxing Miao, Junyong Zhang and Jiqiang Zheng
Journal: Proc. Amer. Math. Soc. 140 (2012), 2091-2102
MSC (2010): Primary 35Q40, 35Q55, 47J35
DOI: https://doi.org/10.1090/S0002-9939-2011-11076-1
Published electronically: October 20, 2011
MathSciNet review: 2888196
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is devoted to the study of the restriction problem in harmonic analysis. Based on the spherical harmonics expansion and analyzing the asymptotic behavior of the Bessel function, we show that a modified linear adjoint restriction estimate holds for all Schwartz functions compactly supported on the cone, which generalizes Shao's result.


References [Enhancements On Off] (What's this?)

  • 1. B. Barcelo. On the restriction of the Fourier transform to a conical surface, Trans. Amer. Math. Soc. 292 (1985), 321-333. MR 805965 (86k:42023)
  • 2. F. Nicola, Slicing surfaces and Fourier restriction conjecture, Proceedings of the Edinburgh Mathematical Society 52 (2009), 515-527. MR 2506403
  • 3. S. Shao, Sharp linear and bilinear restriction estimates for paraboloids in the cylindrically symmetric case, Revista Matemática Iberoamericana 25 (2009), 1127-1168. MR 2590695
  • 4. S. Shao, A note on the cone restriction conjecture in the cylindrically symmetric case, Proc. Amer. Math. Soc. 137 (2009), 135-143. MR 2439434 (2010f:35222)
  • 5. E. M. Stein, Some problems in harmonic analysis, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams College, Williamstown, Mass., 1978), Amer. Math. Soc., 1979, pp. 3-20. MR 545235 (80m:42027)
  • 6. E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Mathematical Series, 43, Princeton University Press, Princeton, N.J., 1993. MR 1232192 (95c:42002)
  • 7. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, 32, Princeton University Press, Princeton, N.J, 1971. MR 0304972 (46:4102)
  • 8. R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke. Math. J. 44 (1977), 705-714. MR 0512086 (58:23577)
  • 9. J. Sterbenz, Appendix by I. Rodnianski, Angular regularity and Strichartz estimates for the wave equation. Int. Math. Res. Notices 4 (2005), 187-231. MR 2128434 (2006i:35212)
  • 10. T. Tao, Recent progress on the restriction conjecture. arxiv:math/0311181.
  • 11. T. Tao, The Bochner-Riesz conjecture implies the restriction conjecture, Duke Math. J. 96 (1999), 363-375. MR 1666558 (2000a:42023)
  • 12. T. Tao, Endpoint bilinear restriction theorems for the cone and some sharp null form estimates, Math. Z. 238 (2001), 215-268. MR 1865417 (2003a:42010)
  • 13. T. Tao, A sharp bilinear restrictions estimate for paraboloids, Geom. Funct. Anal. 13 (2003), 1359-1384. MR 2033842 (2004m:47111)
  • 14. T. Tao, A. Vargas and L. Vega, A bilinear approach to the restriction and Kakeya conjectures, J. Amer. Math. Soc. 11 (1998), 967-1000. MR 1625056 (99f:42026)
  • 15. G. N. Watson, A Treatise on the Theory of Bessel Functions. Second Edition, Cambridge University Press, 1944. MR 0010746 (6:64a)
  • 16. T. Wolff, A sharp bilinear cone restriction estimate, Ann. of Math. (2) 153 (2001), 661-698. MR 1836285 (2002j:42019)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35Q40, 35Q55, 47J35

Retrieve articles in all journals with MSC (2010): 35Q40, 35Q55, 47J35


Additional Information

Changxing Miao
Affiliation: Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing, People’s Republic of China 100088
Email: miao_changxing@iapcm.ac.cn

Junyong Zhang
Affiliation: The Graduate School of China Academy of Engineering Physics, P.O. Box 2101, Beijing, People’s Republic of China 100088
Address at time of publication: Department of Mathematics, Beijing Institute of Technology, Beijing, People’s Republic of China 100081 – and – Beijing Computational Science Research, Beijing, People’s Republic of China 100084
Email: zhangjunyong111@sohu.com

Jiqiang Zheng
Affiliation: The Graduate School of China Academy of Engineering Physics, P.O. Box 2101, Beijing, People’s Republic of China 100088
Email: zhengjiqiang@gmail.com

DOI: https://doi.org/10.1090/S0002-9939-2011-11076-1
Keywords: Linear adjoint restriction estimate, spherical harmonics
Received by editor(s): September 15, 2010
Received by editor(s) in revised form: January 18, 2011, and February 11, 2011
Published electronically: October 20, 2011
Communicated by: Hart F. Smith
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society