Extremely weak interpolation in

Author:
Andreas Hartmann

Journal:
Proc. Amer. Math. Soc. **140** (2012), 2411-2416

MSC (2010):
Primary 30E05, 32A35

Published electronically:
April 20, 2011

MathSciNet review:
2898703

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a sequence of points in the unit disk, a well known result due to Carleson states that if given any point of the sequence it is possible to interpolate the value one in that point and zero in all the other points of the sequence, with uniform control of the norm in the Hardy space of bounded analytic functions on the disk, then the sequence is an interpolating sequence (i.e. every bounded sequence of values can be interpolated by functions in the Hardy space). It turns out that such a result holds in other spaces. In this short paper we would like to show that for a given sequence it is sufficient to find just **one** function suitably interpolating zeros as well as ones to deduce interpolation in the Hardy space. The result has an interesting interpretation in the context of model spaces.

**[Am08]**Eric Amar,*On linear extension for interpolating sequences*, Studia Math.**186**(2008), no. 3, 251–265. MR**2403667**, 10.4064/sm186-3-4**[Ca58]**Lennart Carleson,*An interpolation problem for bounded analytic functions*, Amer. J. Math.**80**(1958), 921–930. MR**0117349****[Gar81]**John B. Garnett,*Bounded analytic functions*, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR**628971****[Har99]**Andreas Hartmann,*Free interpolation in Hardy-Orlicz spaces*, Studia Math.**135**(1999), no. 2, 179–190. MR**1690752****[Har96]**-,*Interpolation libre et caractérisation des traces de fonctions holomorphes sur les réunions finies de suites de Carleson*, Ph.D. thesis, July 1996, Bordeaux.**[Iz93]**Keiji Izuchi,*Factorization of Blaschke products*, Michigan Math. J.**40**(1993), no. 1, 53–75. MR**1214055**, 10.1307/mmj/1029004674**[Ka63]**V. Kabaila,*Interpolation sequences for the 𝐻_{𝑝} classes in the case 𝑝<1*, Litovsk. Mat. Sb.**3**(1963), no. 1, 141–147 (Russian, with Lithuanian and English summaries). MR**0182735****[Nik86]**N. K. Nikolski [Nikol'skiĭ], Treatise on the shift operator. Spectral function theory. With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller. Translated from the Russian by Jaak Peetre. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 273. Springer-Verlag, Berlin, 1986.**[Nik02]**Nikolai K. Nikolski,*Operators, functions, and systems: an easy reading. Vol. 1*, Mathematical Surveys and Monographs, vol. 92, American Mathematical Society, Providence, RI, 2002. Hardy, Hankel, and Toeplitz; Translated from the French by Andreas Hartmann. MR**1864396**

Nikolai K. Nikolski,*Operators, functions, and systems: an easy reading. Vol. 2*, Mathematical Surveys and Monographs, vol. 93, American Mathematical Society, Providence, RI, 2002. Model operators and systems; Translated from the French by Andreas Hartmann and revised by the author. MR**1892647****[ShHSh]**H. S. Shapiro and A. L. Shields,*On some interpolation problems for analytic functions*, Amer. J. Math.**83**(1961), 513–532. MR**0133446****[SchS98]**Alexander P. Schuster and Kristian Seip,*A Carleson-type condition for interpolation in Bergman spaces*, J. Reine Angew. Math.**497**(1998), 223–233. MR**1617432**, 10.1515/crll.1998.041**[SchS00]**Alexander P. Schuster and Kristian Seip,*Weak conditions for interpolation in holomorphic spaces*, Publ. Mat.**44**(2000), no. 1, 277–293. MR**1775765**, 10.5565/PUBLMAT_44100_11**[Vas84]**V. I. Vasyunin,*Traces of bounded analytic functions on finite unions of Carleson sets*, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**126**(1983), 31–34 (Russian, with English summary). Investigations on linear operators and the theory of functions, XII. MR**697421**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2010):
30E05,
32A35

Retrieve articles in all journals with MSC (2010): 30E05, 32A35

Additional Information

**Andreas Hartmann**

Affiliation:
Equipe d’Analyse, Institut de Mathématiques de Bordeaux, Université de Bordeaux, 351 cours de la Libération, 33405 Talence, France

Email:
hartmann@math.u-bordeaux.fr

DOI:
http://dx.doi.org/10.1090/S0002-9939-2011-10851-7

Keywords:
Hardy spaces,
interpolating sequences,
weak interpolation

Received by editor(s):
October 16, 2010

Received by editor(s) in revised form:
October 18, 2010, and February 22, 2011

Published electronically:
April 20, 2011

Additional Notes:
This project was elaborated while the author was Gaines Visiting Chair at the University of Richmond and partially supported by the French ANR-project FRAB

Communicated by:
Richard Rochberg

Article copyright:
© Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.