F-BLOWUPS OF F-REGULAR SURFACE SINGULARITIES

NOBUO HARA

(Communicated by Lev Borisov)

Abstract. We prove that F-blowups of any F-regular surface singularity coincide with the minimal resolution.

In [Y1], Yasuda introduced the notion of the eth F-blowup, which is a canonical birational modification of varieties in characteristic $p > 0$ defined as a flattening of the direct image of the structure sheaf by the eth iterate of the Frobenius morphism. Yasuda also showed the monotonicity of the sequence of F-blowups for F-pure singularities [Y2]. Furthermore, it turns out that the eth F-blowup $FB_e(X)$ of a surface singularity X coincides with the minimal resolution for $e \gg 0$ if X is a toric singularity [Y1], a tame quotient singularity [TY] or an F-rational double point [HS].

The above results seem to suggest a connection of F-blowups with F-singularities such as F-purity and F-regularity, which are the concepts from commutative algebra defined via splitting of the Frobenius ring homomorphism in characteristic $p > 0$; see e.g., [HH], [Hu]. Actually, toric and tame quotient singularities are F-regular as well as F-rational double points, while there are non-F-regular surface singularities whose F-blowups do not coincide with the minimal resolution [HS]. Thus it is natural to ask if the F-blowups of F-singularities have particularly nice properties such as the minimal resolution.

In this paper, we give an affirmative answer to the above question:

Theorem 3.1. Let (X, x) be an F-regular surface singularity defined over an algebraically closed field of characteristic $p > 0$. Then the eth F-blowup $FB_e(X)$ of X coincides with the minimal resolution of X for $e \gg 0$.

To prove the theorem we first give a characterization of F-regular surface singularities in Theorem 2.1: A surface singularity (X, x) in characteristic $p > 0$ is F-regular if and only if its complete local ring $R = \mathcal{O}_{X, x}$ is a pure subring of a regular local ring that is module-finite over R. Actually, toric and tame quotient singularities are F-regular as well as F-rational double points, while there are non-F-regular surface singularities whose F-blowups do not coincide with the minimal resolution [HS]. Thus it is natural to ask if the F-blowups of F-singularities have particularly nice properties such as the minimal resolution.

In this paper, we give an affirmative answer to the above question:

Theorem 3.1. Let (X, x) be an F-regular surface singularity defined over an algebraically closed field of characteristic $p > 0$. Then the eth F-blowup $FB_e(X)$ of X coincides with the minimal resolution of X for $e \gg 0$.

To prove the theorem we first give a characterization of F-regular surface singularities in Theorem 2.1: A surface singularity (X, x) in characteristic $p > 0$ is F-regular if and only if its complete local ring $R = \mathcal{O}_{X, x}$ is a pure subring of a regular local ring that is module-finite over R. It then follows that if (X, x) is an F-regular surface singularity, then there are only finitely many isomorphism classes of indecomposable reflexive R-modules. Once we have established this property for R (which is referred as “finite representation type”), we can directly use the (strong) F-regularity of R to prove that the ring R^{1/p^e} of p^eth roots of R (or the eth Frobenius direct image $F^e_*\mathcal{O}_X$ of $R = \mathcal{O}_X$) contains all indecomposable reflexive $R = \mathcal{O}_X$-modules as its direct summands for $e \gg 0$ (Theorem 3.3). Thanks to this
key theorem, we are able to prove Theorem 3.1 by the aid of Wunram’s result \[W\] on the correspondence between “special” reflexive modules and exceptional curves of the minimal resolution.

There are some similarities between F-regular surface singularities in characteristic \(p > 0\) and quotient surface singularities in characteristic zero. The local rings of both singularities are pure subrings of a module-finite regular local ring. Also, Corollary 3.6 is considered an analogue of Ishii’s result \[I\] that the G-Hilbert scheme of a complex quotient surface singularity is the minimal resolution. These analogies seem to suggest that for surface singularities, F-regularity is the right notion in characteristic \(p > 0\) that corresponds to quotient singularity in characteristic zero.

1. Preliminaries

F-regularity. The notion of F-regularity was first defined in terms of “tight closure” by Hochster and Huneke. To avoid technicality involving tight closure, we will adopt another version of F-regularity called strong F-regularity, which is known to coincide with the one defined via tight closure for \(\mathbb{Q}\)-Gorenstein rings (and in particular in dimension two). Although it is not known whether or not these two variants of F-regularity coincide in general, we often say just “F-regular” to mean “strongly F-regular,” since we mostly work on surface singularities in this paper.

Definition 1.1 \([HH]\). Let \(R\) be an integral domain of characteristic \(p > 0\) which is F-finite (i.e., the inclusion map \(R \hookrightarrow R^{1/p}\) is module-finite). We say that \(R\) is strongly F-regular if for every nonzero element \(c \in R\), there exists a power \(q = p^e\) such that the inclusion map \(c^{1/q}R \hookrightarrow R^{1/q}\) splits as an \(R\)-module homomorphism.

1.2. We use the following basic properties of (strongly) F-regular rings \([HH]\):

(1) Regular rings are F-regular.

(2) Pure subrings\(^1\) of an F-regular ring are F-regular.

(3) In particular, if \(R\) is a subring of an F-regular ring \(S\) such that \(R\) is a direct summand of \(S\) as an \(R\)-module, then \(R\) is F-regular.

1.3. F-regular vs. splinter. One of the important ring-theoretic properties of F-regularity is that an F-regular domain \(R\) of characteristic \(p > 0\) is a direct summand as an \(R\)-module of every module-finite extension ring; cf. \([HH]\) Theorem 1.7]. Rings having this property are called splinters. It is proved by Singh \([SI]\) that this splinter property characterizes F-regularity for \(\mathbb{Q}\)-Gorenstein rings in characteristic \(p > 0\).

For the reader’s convenience, we give a brief proof to an a priori weaker statement which will be used later.

Proposition 1.4. Let \(R\) be an F-finite domain of characteristic \(p > 0\). If \(R\) is strongly F-regular, then \(R\) is a splinter.

Proof. Let \(R \subseteq S\) be any module-finite extension. Then there exists \(\phi \in \text{Hom}_R(S, R)\) such that \(c := \phi(1)\) is a nonzero element of \(R\). Then by the strong F-regularity of \(R\), there exist a power \(q = p^e\) of \(p\) and \(\psi \in \text{Hom}_R(R^{1/q}, R)\) such that \(\psi(c^{1/q}) = 1\).

\(^1\) A ring extension \(R \subseteq S\) is said to be pure if for all \(R\)-modules \(M\), the induced \(R\)-module homomorphism \(M = R \otimes_R M \to S \otimes_R M\) is injective. When \(S\) is module-finite over \(R\), this is equivalent to the condition that the map \(R \hookrightarrow S\) splits as an \(R\)-module homomorphism.
Let $\phi^{1/q} \in \text{Hom}_{R^{1/q}}(S^{1/q}, R^{1/q})$ be the map corresponding to ϕ. Then $\psi \circ \phi^{1/q} \in \text{Hom}_R(S^{1/q}, R)$ gives a splitting of $R \twoheadrightarrow R^{1/q} \twoheadrightarrow S^{1/q}$. Since this ring extension factors through S, the extension $R \twoheadrightarrow S$ also splits, via which R is a direct summand of S as an R-module. \hfill \square

1.5. F-regular vs. log terminal (H, HW). F-regularity is closely related to log terminal singularity. Namely, we have the implication

F-regular and \mathbb{Q}-Gorenstein \Rightarrow log terminal singularity

in arbitrary characteristic. The converse of this implication also holds in characteristic $p \gg 0$. In dimension two, F-regular rings are always \mathbb{Q}-Gorenstein, so that the implication “F-regular \Rightarrow log terminal singularity” holds without assuming the \mathbb{Q}-Gorensteinness. Let us discuss the case of surface singularities more in detail.

Let (X, x) be a normal surface singularity defined over an algebraically closed field k and let $\mu: \tilde{X} \to X$ be the minimal resolution with irreducible exceptional curves E_1, \ldots, E_s. The numerical anti-discrepancy divisor Δ of μ is defined to be the μ-exceptional \mathbb{Q}-divisor on \tilde{X} such that $\Delta E_i = -K_{\tilde{X}} E_i$ for $1 \leq i \leq s$. Note that Δ is an effective divisor by the minimality of (μ). The singularity (X, x) is said to be log terminal if the integral part of Δ is zero, i.e., $|\Delta| = 0$. Since this is a numerical condition depending only on the intersection matrix $(E_i E_j)_{1 \leq i,j \leq s}$ of the exceptional curves and their genera, log terminal surface singularities are classified in terms of the weighted dual graph Γ associated to the exceptional set $E = \bigcup_{i=1}^s E_i$. In particular, if (X, x) is log terminal, then Γ is a chain or a star-shaped graph with three branches, and each $E_i \cong \mathbb{P}^1$. In the latter case, we associate to Γ a triple (d_1, d_2, d_3) consisting of the absolute values of the determinants of the intersection matrices of the three branches. In this notation, (X, x) is a log terminal singularity if and only if $E_i \cong \mathbb{P}^1$ for $1 \leq i \leq s$ and either one of the following holds:

(A) Γ is a chain;
(D) Γ is star-shaped with $(d_1, d_2, d_3) = (2, 2, n)$, where $n \geq 2$;
(E_6) Γ is star-shaped with $(d_1, d_2, d_3) = (2, 3, 3)$;
(E_7) Γ is star-shaped with $(d_1, d_2, d_3) = (2, 3, 4)$;
(E_8) Γ is star-shaped with $(d_1, d_2, d_3) = (2, 3, 5)$.

The graphs appearing in this classification are exactly the same as the graphs of quotient surface singularities in characteristic zero, but a log terminal surface singularity in characteristic $p > 0$ is not a quotient singularity in general.

The classification of F-regular surface singularities obtained in [H] is as follows: (X, x) is F-regular if and only if the type of the singularity and characteristic $p > 0$ is either one of the following:

(1) type A (possibly smooth), p is arbitrary;
(2) type D, $p \neq 2$;
(3) type E_6 or E_7, $p > 3$;
(4) type E_8, $p > 5$.

In particular, log terminal surface singularities in characteristic $p > 5$ are F-regular.

F-blowups. In what follows, we work over an algebraically closed field k of characteristic $p > 0$. For a variety X over k and an integer $e \geq 0$, let $F_e: X^{(e)} \to X$ be

\footnote{This condition implies that (X, x) is a rational surface singularity from which the \mathbb{Q}-Gorensteinness automatically follows.}
the e-times iterated k-linear Frobenius morphism. We identify this relative Frobenius with the morphism $X^{1/p^e} := \text{Spec}O_X^{1/p^e} \to X$ induced by the inclusion map $O_X \to O_X^{1/p^e}$ into the ring of p^eth roots. (We also abuse the absolute and relative Frobenius, since it is harmless under our assumption that k is algebraically closed.)

Now, the fiber $(F_{\text{rel}}^e)^{-1}(x)$ of the e-times iterated Frobenius over a smooth (closed) point $x \in X$ is a fat point of $X^{(e)}$ of length p^{ne}, where $n = \dim X$. Thus, it is regarded as a reduced point of the Hilbert scheme $\text{Hilb}_{p^{ne}}(X^{(e)})$ of zero-dimensional subschemes of $X^{(e)}$ of length p^{ne}.

Definition 1.6 (Yasuda [Y1]). Let X be a variety of dim $X = n$ over k. The eth F-blowup $\text{FB}_e(X)$ of X is defined to be the closure of the subset

$$\{(F_{\text{rel}}^e)^{-1}(x) \mid x \in X(k) \text{ smooth}\} \subseteq \text{Hilb}_{p^{ne}}(X^{(e)}).$$

It is proved in [Y1] that it is birational and projective over X. Indeed, $\text{FB}_e(X)$ is isomorphic to the irreducible component $\text{Hilb}_{p^{ne}}(X^{(e)}/X)^0$ of the relative Hilbert scheme $\text{Hilb}_{p^{ne}}(X^{(e)}/X) \cong \text{Hilb}_{p^{ne}}(X^{1/p^e}/X)$ that dominates X. We denote the associated structure morphism by $\varphi = \varphi_e: \text{FB}_e(X) \to X$.

By definition, $\varphi: Z = \text{FB}_e(X) \to X$ is a birational projective morphism such that the torsion-free pullback $\varphi^*O_X^{1/p^e} := \varphi^*O_X^{1/p^e}/\text{torsion}$ is a flat (equivalently, locally free) O_Z-algebra of rank p^{ne}, and $\text{FB}_e(X)$ is universal with respect to this property.

Our main concern is the following question in the surface case $n = 2$.

Question. Let (X, x) be a normal surface singularity over k and let $\mu: \tilde{X} \to X$ be the minimal resolution. When is $\text{FB}_e(X)$ equal to the minimal resolution \tilde{X}?

It is proved that $\text{FB}_e(X) = \tilde{X}$ for $e \gg 0$ if (X, x) is either a toric singularity [TY], a tame quotient singularity [TY], or an F-regular double point [HS]. We note that $O_{X,x}$ is F-regular in all of the above three cases. When $X = S/G$ is a tame quotient of smooth S by a finite group G, the essential part is to prove the isomorphism $\text{FB}_e(X) \cong \text{Hilb}^G(S)$ of the F-blowup with the G-Hilbert scheme [TY], since G-Hilb of a tame quotient surface singularity is the minimal resolution by a work of Ishii [I]. In general, an F-regular surface singularity in low characteristic $p > 0$ is not a quotient singularity, so the group G and G-Hilb are not available. However, we can use the rationality of F-regular surface singularities.

A few lemmata on rational surface singularities. Throughout the remainder of this section, we assume that (X, x) is a rational surface singularity and $\mu: \tilde{X} \to X$ is any resolution of the singularity.

It is known that if M is a finitely generated reflexive O_X-module, then its torsion-free pullback $\tilde{M} = \mu^*M$ is a μ-generated locally free $O_{\tilde{X}}$-module such that $\mu_*\tilde{M} = M$ and $R^1\mu_*\tilde{M} = 0$; see e.g., [AV]. Note that $R^1\mu_*\mathcal{F} = 0$ for any μ-generated coherent sheaf on \tilde{X}. This is an easy consequence of the rationality of the singularity (X, x) and the μ-generation of \mathcal{F}, which gives rise to a surjection $O_{\tilde{X}}^{\oplus m} \to \mathcal{F}$.

In particular, since $O_X^{1/q}$ is a reflexive O_X-module of rank q^2, we have the following.

Lemma 1.7 ([HS Corollary 4.6]). The e-th F-blowup $\text{FB}_e(X)$ of a rational surface singularity (X, x) is dominated by the minimal resolution for all $e \geq 0$.

Lemma 1.8. Let \((X, x)\) be a rational surface singularity and let \(\mu : \tilde{X} \to X\) be any resolution of the singularity. If \(M\) is a reflexive \(\mathcal{O}_X\)-module of rank \(r\), then the natural map

\[
\bigwedge^r M \to \mu_*(\det \mu^* M)
\]

is surjective.

Proof. Let \(\tilde{M} = \mu^* M\). It is sufficient to show that the natural map \(M^\otimes i \to \mu_*(\bigwedge^i \tilde{M})\) is surjective for all \(i = 1, \ldots, r\). We factorize this map into two maps, \(\alpha_i : M^\otimes i = (\mu_* M)^\otimes i \to \mu_*(\bigwedge^i \tilde{M})\) and \(\beta_i : \mu_*(\bigwedge^i \tilde{M}) \to \mu_*(\bigwedge^i M)\), and prove that \(\alpha_i\) and \(\beta_i\) are surjective in two steps.

Step 1. We know that \(\alpha_1\) is surjective. Therefore, let \(i \geq 2\) and prove the surjectivity of \(\alpha_i\) by induction on \(i\). Let \(T\) be the torsion part of the \(\mathcal{O}_{\tilde{X}}\)-module \(f^* M\) so that \(\tilde{M} = f^* M/T\). We fix generators \(s_1, \ldots, s_m\) of \(M = f_* \tilde{M}\) and consider the associated surjection \(\sigma : \mathcal{O}_{\tilde{X}}^\oplus m \to M\). Then we have the following two exact sequences:

\[
\begin{align*}
(1) \quad & 0 \to S \to \mathcal{O}_{\tilde{X}}^\oplus m \xrightarrow{\mu^* \sigma} \tilde{M} \to 0, \\
(2) \quad & 0 \to \mu^* \text{Ker}(\sigma) \to S \to T \to 0.
\end{align*}
\]

The long exact sequence of \((1) \otimes \tilde{M}^{\otimes i-1}\) gives

\[
\mu_*(\tilde{M}^{\otimes i-1})^{\otimes m} \xrightarrow{\mu^*(\tilde{M}^{\otimes i})} R^1 \mu_*(S \otimes \tilde{M}^{\otimes i-1}) \to 0,
\]

where the image of the map \(\mu^*(\tilde{M}^{\otimes i}) \to R^1 \mu_*(S \otimes \tilde{M}^{\otimes i-1})\) coincides with the image of the map \(\alpha_i : M^\otimes i \to \mu_*(\tilde{M}^{\otimes i})\) by induction hypothesis. Hence the surjectivity of \(\alpha_i\) would follow if \(R^1 \mu_*(S \otimes \tilde{M}^{\otimes i-1}) = 0\). It then suffices to show that \(R^1 \mu_* T = 0\), because \(\tilde{M}^{\otimes i-1}\) is \(\mu^\bullet\)-generated and \(R^1 \mu_*(S \otimes \tilde{M}^{\otimes i-1}) = R^1 \mu_*(T \otimes \tilde{M}^{\otimes i-1})\) by \((2)\).

To see this we consider the long exact sequence of \(0 \to T \to \mu^* M \to \tilde{M} \to 0\):

\[
\mu_* \mu^* M \to \mu_* \tilde{M} \to R^1 \mu_* T \to R^1 \mu_* \mu^* M.
\]

Here the map \(\mu_* \mu^* M \to \mu_* \tilde{M}\) on the left is surjective since the identity map of \(M\) is factorized as \(M \to \mu_* \mu^* M \to \mu_* \tilde{M} = M\), and \(R^1 \mu_* \mu^* M = 0\) since \(\mu^* M\) is \(\mu^\bullet\)-generated. Thus \(R^1 \mu_* T = 0\), as required.

Step 2. Let \(I_i = \text{Ker}(\tilde{M}^{\otimes i} \to \bigwedge^i \tilde{M})\). If \(I_i\) is \(\mu^\bullet\)-generated, then \(R^1 \mu_* I_i = 0\) so that the required surjectivity of \(\beta_i\) follows from the exact sequence

\[
\mu_*(\tilde{M}^{\otimes i}) \to \mu_*(\bigwedge^i \tilde{M}) \to R^1 \mu_* I_i = 0.
\]

We assume that \(X\) is affine and deduce the global generation of \(I_2\) from that of \(\tilde{M}\). Recall that \(I_2\) is generated by local sections of the form \(x \otimes x\), where \(x\) is any local section of \(M\). We fix global sections \(s_1, \ldots, s_m \in M\) that generate \(\tilde{M}\) and write \(x = \sum_{i=1}^m a_i s_i\) with local regular functions \(a_1, \ldots, a_m\) on \(\tilde{X}\). Then

\[
x \otimes x = \sum_{1 \leq i, j \leq m} a_i a_j (s_i \otimes s_j) = \sum_{i=1}^m a_i^2 (s_i \otimes s_i) + \sum_{1 \leq i < j \leq m} a_i a_j (s_i \otimes s_j + s_j \otimes s_i),
\]

from which we see that \(I_2\) is generated by its global sections \(s_i \otimes s_i\) and \(s_i \otimes s_j + s_j \otimes s_i\) for \(1 \leq i, j \leq m\).
Now the global generation of I_i for any $i \geq 0$ follows from that of I_2 and \tilde{M}, since $I = \bigoplus_{i \geq 0} I_i$ is the two-sided ideal of the tensor algebra $T(\tilde{M}) = \bigoplus_{i \geq 0} \tilde{M}^\otimes i$ generated by all local sections $x \otimes x$ of I_2.

2. Covering of F-regular surface singularities

This section is devoted to proving the following characterization of F-regular surface singularities.

Theorem 2.1. Let (R,m) be a two-dimensional complete local ring with algebraically closed coefficient field $k = R/m$ of characteristic $p > 0$. Then R is F-regular if and only if there exists a module-finite extension of local rings $R \subset k[[t,u]]$ via which R is a pure subring of the regular local ring $k[[t,u]]$.

Proof. The sufficiency is clear from subsection 1.2, so we prove the necessity. Let $X = \text{Spec } R$ and let $\mu: \tilde{X} \to X$ be the minimal resolution of the closed point $x = m \in X$. If R is F-regular, then (X,x) is a log terminal singularity and either one of cases (1)–(4) in subsection 1.5 occurs. First suppose that $p \neq 2,3$. Then there exists a finite covering $(Y,y) \to (X,x)$ with (Y,y) smooth or a rational double point by Kawamata [K], while (Y,y) is covered by a smooth surface germ (S,a) by Artin [Ar2]. Hence we have a module-finite extension $R = \mathcal{O}_{X,x} \subset \mathcal{O}_{S,a} = k[[t,u]]$, via which R is a pure subring of $k[[t,u]]$ by Proposition 1.4. Thus the assertion follows in cases (3) and (4) of subsection 1.5. We consider the remaining cases (1) and (2) separately.

Case (1). Assume that (X,x) is a log terminal singularity of type A. In this case it follows that (X,x) is a toric singularity. We shall sketch the proof given in [BHPV III.5], since it seems less known in characteristic $p > 0$.

Let $E = \bigcup_{i=1}^r E_i$ be the exceptional set of μ with irreducible components $E_i \cong \mathbb{P}^1$ and set $a_i = -E_i^2 \geq 2$. By the completeness of R we can choose divisors B_0 and B_{s+1} on \tilde{X} that intersect E transversally so that B_0, B_{s+1} and the E_i’s are arranged as follows:

$$B_0 - E_1 - E_2 - \cdots - E_r - B_{s+1}.$$

Let n,q be the coprime integers with $0 < q < n$ determined by the continued fraction

$$\frac{n}{q} = a_1 - \frac{1}{a_2 - \frac{1}{\ddots - \frac{1}{a_s}}}.$$

Using a recursion formula involving a_i’s as in [BHPV III.5], we can find μ-numerically trivial effective Cartier divisors $Z = nB_0 + qE_1 + (\text{terms of } E_2, \ldots, E_s)$ and $Z' = E_1 + (\text{terms of } E_2, \ldots, E_s, B_{s+1})$ on \tilde{X} such that $\frac{1}{n}(Z + (n-q)Z')$ is Cartier. Since μ-numerical equivalence of Cartier divisors on \tilde{X} is μ-linear equivalence by the rationality of (X,x) [Ar1], there exist regular functions f,g,h on \tilde{X} such that $Z = \text{div} \varphi(f)$, $Z' = \text{div} \varphi(g)$ and $h^n = fg^{n-q}$. Thus \tilde{X} is mapped into the hypersurface W defined by $z^n = xy^{n-q}$.

3In characteristic zero, this is a consequence of the well-known “tautness” of quotient surface singularities. On the other hand, the argument in [BHPV III.5] goes through also in characteristic $p > 0$, although it is stated for complex singularities.
Consider the ring homomorphism \(k[[x, y]] \to R = H^0(\overline{X}, \mathcal{O}_{\overline{X}}) \) sending \(x, y \) to \(f, g \), respectively, and let

\[
\rho: \overline{X} \xrightarrow{\mu} X \xrightarrow{\gamma} S = \text{Spec } k[[x, y]]
\]

be the corresponding morphisms. Since the divisors \(Z = \text{div}_X(f) \) and \(Z' = \text{div}_X(g) \) intersect exactly on \(E \), we have \(\rho^{-1}(o) = E \). Hence \((f, g) \subset R \) is an ideal of finite colength so that \(\gamma \) is a finite morphism. Since \(\gamma \) factors through the normalization \(\overline{W} \) of \(W \), which is an \(n \)-fold covering of \(S \), we would obtain \(X \cong \overline{W} \) as soon as we know that \(\deg \gamma = n \). To see this, let \(C_0 \subset X \) and \(L_0 = \text{div}_S(x) \subset S \) be the images of the curve \(B_0 \subset \overline{X} \), and consider the module-finite extension of discrete valuation rings \(\mathcal{O}_{S,L_0} \hookrightarrow \mathcal{O}_{X,C_0} \cong \mathcal{O}_{\overline{X},B_0} \) via which the regular parameter \(x \) of \(\mathcal{O}_{S,L_0} \) maps to an element \(f \) of order \(n \) in \(\mathcal{O}_{\overline{X},B_0} \). Also, it induces an isomorphism \(k((y)) \cong k((g)) \) of the residue fields, since \(g \) is part of a regular system of parameters at \(B_0 \cap E_1 \). Hence \(\mathcal{O}_{\overline{X},B_0} \) is a free \(\mathcal{O}_{S,L_0} \)-module of rank \(n \) so that \(\deg \gamma = n \). Consequently, \(R \) is isomorphic to the normalization of \(\mathcal{O}_{W,o} = k[[x, y, z]]/(z^n - xy^{n-q}) \cong k[[t^n, u^n, tu^{n-q}]] \subset k[[t, u]] \), from which we obtain a desired extension \(R \subset k[[t, u]] \).

Case (2). Assume that \((X, x)\) is a log terminal singularity of type \(D \) and \(p \neq 2 \). Let the exceptional curves \(E_1, \ldots, E_s \) of \(\mu \) be indexed as

\[
\begin{array}{c c c c c c c}
E_1 & E_2 & E_3 & E_4 & \cdots & E_s, \\
\end{array}
\]

where \(E_1^2 = E_2^2 = -2 \). Since \(R \) is complete, we can choose effective divisors \(D_i \) on \(\overline{X} \) such that \(D_i E_j = \delta_{ij} \). Let \(B = E_1 + E_2 \) and \(D = D_1 + D_2 - D_3 \). Then \(BE_1 = -2DE_i \) for \(1 \leq i \leq s \) so that \(B \sim -2D \) since \((X, x)\) is a rational singularity [Ar1]. The map \(\mathcal{O}_{\overline{X}}(D)^{\otimes 2} \cong \mathcal{O}_{\overline{X}}(-B) \hookrightarrow \mathcal{O}_{\overline{X}} \) gives rise to an \(\mathcal{O}_{\overline{X}} \)-algebra structure on \(A = \mathcal{O}_{\overline{X}} \oplus \mathcal{O}_{\overline{X}}(D) \), and we have a double cover \(\overline{\pi}: \overline{Y} = \text{Spec}_{\overline{X}} A \to \overline{X} \) branched over \(B = E_1 + E_2 \). We note that \(\overline{Y} \) is smooth since \(B \) is smooth, and \(\overline{\pi} \) induces a double cover \(\pi: (Y, y) \to (X, x) \) that fits in the following commutative diagram:

\[
\begin{array}{c c c c c c c}
\overline{Y} & \xrightarrow{g} & Y \\
\overline{\pi} \downarrow & & \downarrow \pi \\
\overline{X} & \xrightarrow{f} & X \\
\end{array}
\]

Here \(g: \overline{Y} \to Y \) is a proper birational morphism, and it is easy to see that its exceptional set \(g^{-1}(y) = \bigcup F_j \) consists of smooth rational curves \(F_1, \ldots, F_{2s-3} \) arranged as follows:

\[
\begin{array}{c c c c c c c}
F_1 & F_2 & F_3 & F_4 & \cdots & F_s \\
\end{array}
\]

\[
\begin{array}{c c c c c c c}
F_2 & F_3 & F_4 & \cdots & F_{s+1} & \cdots & F_{2s-3}, \\
\end{array}
\]
where \(F_2^2 = F_2^3 = -1, F_3^2 = 2E_2^2 \) and \(F_s^2 = F_{s-3}^2 = E_i^2 \) for \(4 \leq i \leq s \). Contracting the (-1)-curves \(F_1 \) and \(F_2 \), we obtain a chain of \(2s - 5 \) rational curves, which contracts to \((Y, y) \). Thus \((Y, y) \) is of type \(A \), which admits a covering \((S, o) \rightarrow (Y, y) \) from a smooth surface germ as we have seen in Case (1). Composing this with the double cover \(\pi \), we obtain a desired covering \((S, o) \rightarrow (X, x) \). \(\Box \)

It follows from Theorem 2.1 that a two-dimensional F-regular local ring \(R = \mathcal{O}_{X, x} \) has finite representation type, that is, there are only finitely many isomorphism classes of indecomposable maximal Cohen–Macaulay \(R \)-modules. (Note that maximal Cohen–Macaulay modules over a two-dimensional ring are the same as the reflexive modules.)

Corollary 2.2 (cf. [Aus, Proposition 2.1]). Let \((R, m) \) be a two-dimensional complete local ring with algebraically closed coefficient field \(k = R/m \) of characteristic \(p > 0 \). If \(R \) is F-regular, then \(R \) has finite representation type.

Proof. By Theorem 2.1, \(R \) is a pure subring of a complete regular local ring \(k[[x, y]] \) that is module-finite over \(R \). We abuse the notation to denote \(S = k[[x, y]] \).

Let \(M \) be any indecomposable reflexive \(R \)-module and let \(M' = \text{Hom}_R(M, R) \) be its \(R \)-dual. By the purity of the ring extension \(R \subset S \), the monomorphisms of \(R \)-modules \(\text{Hom}_R(M', R) \rightarrow \text{Hom}_R(M', S) \) splits. Since \(\text{Hom}_R(M', S) \) is a reflexive module over a two-dimensional regular local ring \(S \), it is a free \(S \)-module so that \(M = \text{Hom}_R(M', R) \) is a direct summand as an \(R \)-module of a finite sum \(S \oplus n \).

We note that the category of \(R \)-modules is a Krull-Schmidt category because \(R \) is complete. Hence the fact that \(M \) is indecomposable and a direct summand of \(S \oplus n \) implies that \(M \) is a direct summand of \(S \).

It follows that \(S \) is a full \(R \)-module; that is, every indecomposable reflexive module is isomorphic to a direct summand of the \(R \)-module \(S \). Since \(S \) is module-finite over \(R \), the conclusion follows. \(\Box \)

Question. We may ask if Theorem 2.1 and Corollary 2.2 remain true in the absence of F-regularity. Let \((X, x) \) be any log terminal surface singularity. Then:

1. Does there exist a finite covering \(S \rightarrow X \) from a smooth surface germ \((S, o) \)?
2. Does \(R = \mathcal{O}_{X, x} \) have finite representation type?

It is known that (1) and (2) are affirmative for rational double points [Ar2], [AV].

3. F-blowups of F-regular surface singularities

Throughout this section we work under the following notation: Let \((X, x) \) be a normal surface singularity defined over an algebraically closed field of characteristic \(p > 0 \). Since our problem is local, we will presumably put \(X = \text{Spec} R \), where \(R = \mathcal{O}_X = \mathcal{O}_{X, x} \).

The purpose of this section is to prove the following theorem conjectured in [HS].

Theorem 3.1. If \((X, x) \) is an F-regular surface singularity, then its \(e \)-th F-blowup \(\text{FB}_e(X) \) coincides with the minimal resolution of \(X \) for \(e \gg 0 \).

This generalizes Proposition 4.9 of [HS], which is proved for (F-)rational double points only. This earlier result is based on an explicit description of the McKay correspondence involving a covering of the rational double point by a smooth surface ([AV], [GSV]). We give here a simpler approach that directly uses strong F-regularity without referring to any explicit description of a covering.
Proof. To begin with, let \(\hat{R} \) be the \(m_\ast \)-adic completion of \(R \) and let \(\hat{X} = \text{Spec} \hat{R} \). Then the F-regularity of \(R \) inherits to \(\hat{R} \), and \(\text{FB}_{\bullet} (\hat{X}) \cong \text{FB}_{\bullet} (X) \times_X \hat{X} \) by [Y1 Proposition 2.11]. Since \((X, x)\) is an isolated singularity, we may assume without loss of generality that \(R \) is a complete local ring to prove Theorem 3.3.

Thanks to Corollary 2.2, the F-regularity of \(R \) implies that it has finite representation type. Let \(M_1, \ldots, M_n \) be the (isomorphism classes of) indecomposable reflexive \(O_{X,x} \)-modules.

The next few results may hold in arbitrary dimension. We first show an easy lemma.

Lemma 3.2. Let \(R \) be an integral domain and let \(M_1, \ldots, M_n \) be finitely generated torsion-free \(R \)-modules with rank \(M_i = r_i \). Then there is a non-zero element \(c \in R \) such that for all \(i = 1, \ldots, n \), the multiplication map by \(c \): \(M_i \to M_i; \ m \mapsto cm \), factors through the free module of rank \(r_i \) as \(M_i \to R^{\oplus r_i} \to M_i \).

Proof. It is easy to see that we can choose \(0 \neq c_i \in R \) such that the multiplication by \(c_i \) factors as \(M_i \to R^{\oplus r_i} \to M_i \). Then the product \(c = c_1 \cdots c_n \) satisfies the required property. \(\square \)

The following is our key technical result; cf. Corollary 2.2.

Theorem 3.3. Let \(R = O_X \) be a strongly F-regular complete local ring with only finitely many isomorphism classes of indecomposable reflexive \(R \)-modules \(M_1, \ldots, M_n \). Then the \(R \)-module \(R^{1/p^e} \cong F_*^e O_X \) is full for \(e \gg 0 \), that is, \(M_i \) is isomorphic to a direct summand as an \(R \)-module of \(R^{1/p^e} \).

Proof. Choose \(c \) as in Lemma 3.2 and let \(M_i^\vee = \text{Hom}_R (M_i, R) \) be the \(R \)-dual of \(M_i \). Then, since \(R \) is strongly F-regular, there exists \(q = p^e \) such that the monomorphism of \(R \)-modules

\[
M_i = \text{Hom}_R (M_i^\vee, R) \overset{c^i_{1/q}}\longrightarrow \text{Hom}_R (M_i^\vee, R^{1/q})
\]

splits. Since \(\text{Hom}_R (M_i^\vee, R^{1/q}) \cong \text{Hom}_{O_X} (M_i^\vee, F_*^e O_X) \) is a reflexive module over \(R^{1/q} \cong F_*^e O_X \), it is isomorphic to a direct sum of copies of \(F_*^e M_i \) \((i = 1, \ldots, n)\): \(\text{Hom}_R (M_i^\vee, R^{1/q}) \cong \bigoplus_{j=1}^n F_*^e M_j^{\oplus r_j} \). Thus by Lemma 3.2, the multiplication map by \(c^i_{1/q} = F_*^e (c) \) on \(\text{Hom}_R (M_i^\vee, R^{1/q}) \cong \text{Hom}_{O_X} (M_i^\vee, F_*^e O_X) \) factors through the free module \((R^{1/q})^{\oplus r_i} \cong F_*^e O_X^{\oplus r_i} \), where \(r_i = \sum_{j=1}^n a_{ij} r_j \). Hence the monomorphism (3) is factorized as

\[
M_i \to \text{Hom}_R (M_i^\vee, R^{1/q}) \to (R^{1/q})^{\oplus r_i} \to \text{Hom}_R (M_i^\vee, R^{1/q}),
\]

and it has a splitting as an \(R \)-module homomorphism. Thus \(M_i \) is isomorphic to a direct summand of \((R^{1/q})^{\oplus r_i} \). This implies that \(M_i \) is a direct summand of \(R^{1/q} \), since the category of \(R \)-modules is a Krull-Schmidt category. \(\square \)

Corollary 3.4. In the situation of Theorem 3.3, if we write \(R^{1/p^e} = \bigoplus_{i=1}^n M_i^{\oplus a_i^{(e)}} \),

then the limit

\[
\lim_{e \to \infty} \frac{a_i^{(e)}}{p^{e}}
\]

exists and is a positive rational number for all \(i = 1, \ldots, n \).

4This monomorphism is exactly equal to the bidual of the map \(M_i \cong M_i \otimes_R R^{1/q} \to M_i \otimes_R R^{1/q} \).
Proof. The existence and positivity of the limit follows from Smith–Van den Bergh [SVdB Proposition 3.3.1] and the rationality from Seibert [Sc3 Lemma 2.4]. □

Remark 3.5. (1) We note the difference between Corollary 3.4 and [SVdB Proposition 3.3.1]. In our argument, M_1, \ldots, M_n represent all isomorphism classes of indecomposable reflexive R-modules, whereas they are just those which appear as a direct summand of R^{1/p^e} for some $e \geq 0$ in [SVdB Proposition 3.3.1].

(2) When a rational double point R is a pure subring of $S = k[[x, y]]$, if we write $S = \bigoplus_{i=1}^n M_i^{\oplus b_i}$ as an R-module, then the above limit is described as

$$\lim_{e \to \infty} \frac{a_i^{(e)}}{p^{2e}} = \frac{b_i}{r} \in \frac{1}{r} \mathbb{Z},$$

where $r = \sum_{i=1}^s b_ir_i = \text{rank}_R S$; see [HS Lemma 4.10].

To complete the proof of Theorem 3.1 we introduce some additional notation:

$\mu: \bar{X} \to X$: the minimal resolution of (X, x) with $\text{Exc} (\mu) = \bigcup_{i=1}^s E_i$;

$\varphi = \varphi_\mu: FB_\mu(X) \to X$: the μ-F-blowup.

Note that the F-regularity of $R = \mathcal{O}_X$ implies that (X, x) is a rational singularity. Then by Wunram [W, Main Result (a)] part of indecomposable reflexive \mathcal{O}_X-modules called special reflexives are in one-to-one correspondence with the irreducible exceptional curves E_1, \ldots, E_s of the minimal resolution. We reorder the indecomposable reflexive \mathcal{O}_X-modules M_1, \ldots, M_n so that the first s of them, M_1, \ldots, M_s ($s \leq n$), are special. Then one has

$$c_1(\mu^* M_i) E_j = \delta_{ij}$$

for $1 \leq i, j \leq s$.

Now, with the aid of Wunram’s result, the argument for F-rational double points in [HS Proposition 4.9] works for F-regular surface singularities as well.

Proof of Theorem 3.1 continued. Let the reflexive \mathcal{O}_X-module \mathcal{O}_X^{1/p^r} be generated by m elements and pick a surjection $\mathcal{O}_X^{\oplus m} \to \mathcal{O}_X^{1/p^r}$. Since $\mu^* \mathcal{O}_X^{1/p^r}$ is a locally free \mathcal{O}_X-module of rank p^{2e} (AV), the induced surjection $\mathcal{O}_X^{\oplus m} \to \mu^* \mathcal{O}_X^{1/p^r}$ gives rise to a morphism $\Phi_\mu: \bar{X} \to \mathbb{G}$ over X to the Grassmannian $\mathbb{G} = \text{Grass}(p^{2e}, \mathcal{O}_X^{\oplus m})$ such that $\mu^* \mathcal{O}_X^{1/p^r}$ is isomorphic to the pullback of the universal quotient bundle of \mathbb{G}.

Similarly, since the torsion-free pullback $\varphi^* \mathcal{O}_X^{1/p^r}$ to $Z = FB_\mu(X)$ is locally free, the surjection $\mathcal{O}_Z^{\oplus m} \to \varphi^* \mathcal{O}_X^{1/p^r}$ gives rise to a morphism $Z = FB_\mu(X) \to \mathbb{G}$ over X, through which Φ_μ factors as

$$\Phi_\mu: \bar{X} \to FB_\mu(X) \to \mathbb{G}$$

by Lemma 1.7. Composing Φ_μ with the Plücker embedding $\mathbb{G} \hookrightarrow \mathbb{P}$ into the projective $N = (\binom{m}{p^{2e}} - 1)$-space $\mathbb{P} = \mathbb{P}^{N}$ over X, we obtain a morphism induced by the surjection $\mathcal{O}_X^{N+1} = \bigwedge^{p^{2e}} \mathcal{O}_{\bar{X}}^{\oplus m} \to \det \mu^* \mathcal{O}_X^{1/p^r}$, which coincides with the morphism

$$\Phi_{|L_1|}: \bar{X} \to FB_\mu(X) \to \mathbb{P}$$

given by the complete linear system associated to the μ-generated line bundle $L = c_1(\mu^* \mathcal{O}_X^{1/p^r})$ by Lemma 1.8. Now if we write $F^*_\mu \mathcal{O}_X = \mathcal{O}_X^{\oplus m} \oplus \bigoplus_{i=1}^n M_i^{\oplus s_i}$, then

\footnotesize

\begin{itemize}
\item Part (a) of the main results of [AV] is verified to be true for rational surface singularities in arbitrary characteristic, without any change of the proof. See also [AV].
\end{itemize}
the intersection number of L with each exceptional curve E_i is $L \cdot E_i \geq a_{1e}$ by (4), so that L is μ-very ample for $e \gg 0$ by Corollary 3.4. It follows that Φ_e is a closed immersion for $e \gg 0$ so that $\tilde{X} \cong \text{FB}_e(X)$. \hfill \square

Corollary 3.6. Let (X, x) be an F-regular surface singularity and let $\pi: (S, o) \rightarrow (X, x)$ be a finite covering from a smooth surface germ (S, o) as in Theorem 2.1. Let $\text{Hilb}_d(S/X)^o$ be the irreducible component of the relative Hilbert scheme $\text{Hilb}_d(S/X)$ that dominates X, where $d = \deg \pi$. Then

$$\tilde{X} \cong \text{Hilb}_d(S/X)^o \cong \text{FB}_e(X)$$

for $e \gg 0$.

Proof. Since $\mu^* \pi_* \mathcal{O}_S$ is a locally free $\mathcal{O}_\tilde{X}$-module of rank d ([AV]), we have a morphism $\tilde{X} \rightarrow \text{Hilb}_d(S/X)^o$ over X. On the other hand, since the ring homomorphism $\mathcal{O}_X \rightarrow \pi_* \mathcal{O}_S$ splits as an \mathcal{O}_X-module homomorphism by Proposition 1.4, we have $\text{Hilb}_d(S/X)^o \rightarrow \text{FB}_e(X)$ by [HS] Proposition 4.2. Thus the conclusion follows from Theorem 3.1. \hfill \square

There exist non-F-regular surface singularities whose F-blowups are not smooth.

Example 3.7 ([HS] Example 4.4). Let $X = \text{Spec } k[[x^p, x^p y - xy^p, y^p]]$, where k is a field of characteristic p, and let $g: X' \rightarrow X$ be the weighted blowup. The exceptional set of g is a single P^1, on which X' has $p+1 A_{p-1}$-singularities. Resolving these A_{p-1}-singularities, we obtain the minimal resolution $f: \tilde{X} \rightarrow X$. (So in case $p = 2$, \tilde{X} has a rational double point of type D_4.) It follows that the torsion-free pullback $g^* \mathcal{O}_X^{1/p^e}$ is a flat $\mathcal{O}_{X'}$-module so that $\text{FB}_e(X)$ is dominated by X' for all $e \geq 0$. Thus the F-blowups of X do not coincide with any resolution of X.

The behavior of F-blowups for non-F-regular surface singularities is a mystery yet. We pose here two extremal questions in opposite directions.

Questions.

1. Let (X, x) be a log terminal surface singularity in characteristic $p > 0$. Does $\text{FB}_d(X)$ coincide with the minimal resolution of X for $e \gg 0$ only if (X, x) is F-regular?

2. Let (X, x) be a normal surface singularity defined over \mathbb{Q}. Does the F-blowup of reduction (X_p, x_p) modulo p of (X, x) coincide with the minimal resolution for $p \gg 0$ (or infinitely many p)?

Acknowledgements

The author is grateful to Tomohiro Okuma for pointing out that a proof for Theorem 2.1 is given in [BHPV] and to Noboru Nakayama for showing another proof given in his preprint [LN] with Y. Lee.

References

Mathematical Institute, Tohoku University, Sendai 980-8578, Japan

E-mail address: hara@math.tohoku.ac.jp