Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Can one distinguish quantum trees from the boundary?


Author: Pavel Kurasov
Journal: Proc. Amer. Math. Soc. 140 (2012), 2347-2356
MSC (2010): Primary 34L25, 81U40; Secondary 35P25, 81V99
DOI: https://doi.org/10.1090/S0002-9939-2011-11077-3
Published electronically: October 26, 2011
MathSciNet review: 2898697
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Schrödinger operators on metric trees are considered. It is proven that for certain matching conditions the Titchmarsh-Weyl matrix function does not determine the underlying metric tree; i.e. there exist quantum trees with equal Titchmarsh-Weyl functions. The constructed trees form one-parameter families of isospectral and isoscattering graphs.


References [Enhancements On Off] (What's this?)

  • 1.
    S.Avdonin and P.Kurasov,
    Inverse problems for quantum trees,
    Inverse Probl. Imaging, 2 (2008), no. 1, 1-21. MR 2375320 (2008m:35362)
  • 2.
    S.Avdonin, P.Kurasov, and M.Nowaczyk,
    Inverse problems for quantum trees. II: Recovering matching conditions for star graphs,
    Inverse Probl. Imaging 4 (2010), no. 4, 579-598. MR 2726415
  • 3.
    R.Band, O.Parzanchevski, and G.Ben-Shach,
    The isospectral fruits of representation theory: quantum graphs and drums,
    J. Phys. A: Math. Theor., 42 (2009), 175202, 42 pp. MR 2539297
  • 4.
    R.Band, A.Sawicki, and U.Smilansky,
    Scattering from isospectral quantum graphs, J. Phys. A 43 (2010), no. 41, 415201, 17 pp. MR 2726689
  • 5.
    M.I.Belishev,
    Boundary spectral inverse problem on a class of graphs (trees) by the BC method,
    Inverse Problems, 20 (2004), 647-672. MR 2067494 (2005c:34052)
  • 6.
    M.I.Belishev and A.F.Vakulenko,
    Inverse problems on graphs: Recovering the tree of strings by the BC-method,
    J. Inv. Ill-Posed Problems, 14 (2006), 29-46. MR 2218385
  • 7.
    J.Boman and P.Kurasov,
    Symmetries of quantum graphs and the inverse scattering problem,
    Adv. in Appl. Math., 35 (2005), no. 1, 58-70. MR 2141505 (2006g:81051)
  • 8.
    B.M.Brown and R.Weikard,
    A Borg-Levinson theorem for trees,
    Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), no. 2062, 3231-3243. MR 2172226 (2006d:34061)
  • 9.
    B.M.Brown and R.Weikard,
    On inverse problems for finite trees,
    in ``Methods of Spectral Analysis in Mathematical Physics, Conference on Operator Theory, Analysis and Mathematical Physics (OTAMP) 2006'', Oper. Theory Adv. Appl., 186, Birkhäuser Verlag, Basel, 2009, 31-48. MR 2732071
  • 10.
    R.Carlson,
    Inverse eigenvalue problems on directed graphs,
    Trans. Amer. Math. Soc., 351 (1999), 4069-4088. MR 1473434 (99m:34189)
  • 11.
    G.Freiling and V.Yurko,
    Inverse problems for differential operators on trees with general matching conditions,
    Applicable Analysis, 86 (2007), no. 6, 653-667. MR 2345888 (2008g:34016)
  • 12.
    N.I.Gerasimenko and B.Pavlov,
    Scattering problems on noncompact graphs,
    Teoret. Mat. Fiz., 74 (1988), 345-359
    (Eng. transl., Theoret. and Math. Phys., 74 (1988), 230-240). MR 953298 (90f:47010)
  • 13.
    N.I.Gerasimenko,
    Inverse scattering problem on a noncompact graph,
    Teoret. Mat. Fiz., 75 (1988), 187-200
    (Eng. transl., Theoret. and Math. Phys., 75 (1988), 460-470). MR 959124 (89f:81239)
  • 14.
    B.Gutkin and U.Smilansky,
    Can one hear the shape of a graph?,
    J. Phys. A, 34 (2001), 6061-6068. MR 1862642 (2002k:05205)
  • 15.
    M.Harmer,
    Inverse scattering on matrices with boundary conditions,
    J. Phys. A, 38 (2005), no. 22, 4875-4885. MR 2148630 (2006b:81349)
  • 16.
    V.Kostrykin and R.Schrader,
    Kirchhoff's rule for quantum wires. II. The inverse problem with possible applications to quantum computers,
    Fortschr. Phys., 48 (2000), no. 8, 703-716. MR 1778728 (2001g:81273)
  • 17.
    P.Kurasov
    Inverse problems for Aharonov-Bohm rings,
    Math. Proc. Cambridge Philos. Soc., 148 (2010), 331-362. MR 2600145
  • 18.
    P.Kurasov
    On the inverse problem for quantum graphs with one cycle,
    Acta Physica Polonica A, 116 (2009), 765-771.
  • 19.
    P.Kurasov and M.Nowaczyk,
    Geometric properties of quantum graphs and vertex scattering matrices,
    Opuscula Math., 30 (2010), 295-309. MR 2669120
  • 20.
    P.Kurasov and F.Stenberg,
    On the inverse scattering problem on branching graphs,
    J. Phys. A, 35 (2002), 101-121. MR 1891815 (2003e:81207)
  • 21.
    B.M.Levitan and M.G.Gasymov,
    Sturm-Liouville differential operators with discrete spectrum,
    Mat. Sb. (N.S.) 63(105), 445-458 (1964). MR 0160962 (28:4171)
  • 22.
    O.Parzanchevski and R.Band,
    Linear representations and isospectrality with boundary conditions,
    J. Geom. Anal., 20 (2010), 439-471. MR 2579517
  • 23.
    T.Shapira and U.Smilansky,
    Quantum graphs which sound the same,
    in: Non-Linear Dynamics and Fundamental Interactions NATO Science Series, 2006, 213, Part 1, 17-29.
  • 24.
    V.Yurko,
    Inverse spectral problems for Sturm-Liouville operators on graphs,
    Inverse Problems, 21 (2005), 1075-1086. MR 2146822 (2005m:34024)
  • 25.
    V.Yurko,
    On the reconstruction of Sturm-Liouville operators on graphs (Russian),
    Mat. Zametki, 79 (2006), no. 4, 619-630;
    translation in Math. Notes, 79 (2006), no. 3-4, 572-582. MR 2251311 (2007h:34013)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 34L25, 81U40, 35P25, 81V99

Retrieve articles in all journals with MSC (2010): 34L25, 81U40, 35P25, 81V99


Additional Information

Pavel Kurasov
Affiliation: Department of Mathematics, LTH, Lund University, Box 118, 221 00 Lund, Sweden; Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden; and Department of Physics, St. Petersburg University, 198904 St. Peterhof, Russia
Email: kurasov@maths.lth.se, pak@math.su.se

DOI: https://doi.org/10.1090/S0002-9939-2011-11077-3
Received by editor(s): August 14, 2010
Received by editor(s) in revised form: February 15, 2011
Published electronically: October 26, 2011
Additional Notes: The author was supported in part by Swedish Research Council grant No. 50092501.
Communicated by: Hart F. Smith
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society