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HOMOGENEOUS IDEALS ASSOCIATED

TO A SMOOTH SUBVARIETY

YU-HAN LIU

(Communicated by Lev Borisov)

Abstract. In this paper we show that a smooth subvariety Z on an odd-
dimensional complex projective smooth variety X is determined by the suf-
ficiently many Hodge conjectures it solves on hypersurfaces Y on X of high
degrees containing Z.

1. Introduction

1.1. In this article we consider the following situation: Let X be a complex projec-
tive smooth variety of dimension 2n+ 1 with a given ample line bundle O(1). Let
Z ⊂ X be a smooth subvariety of dimension n. For any smooth hypersurface Y ∈
|O(d)| of X containing Z, let γ be the projection of [Z] in Hn,n(Y )∩H2n(Y,Q)van,
where H2n(Y,Q)van is the orthogonal complement of the restriction of H2n(X,Q).
The cycle Z solves the Hodge conjecture for the Hodge class γ in the following
sense of reversed induction on dimension: Assume that the Hodge conjecture is
known on X. Then to prove the Hodge conjecture on Y for a given Hodge class
γ̃ ∈ Hn,n(Y ) ∩H2n(Y,Q), it suffices to find a cycle Z having the same projection
in H2n(Y,Q)van as γ̃, since then [Z]− γ̃ lifts to a Hodge class on X and is algebraic
by assumption.

In general, when a vanishing Hodge class γ is given, we may consider a natural
homogeneous ideal E in the homogeneous coordinate ring of X; see §3.2 below. The
point is that E can be constructed using only Hodge theory, or more precisely using
the Poincaré residue, and so apparently is not dependent on the algebraicity of the
class γ. By considering varying hypersurfaces Y containing Z of large degrees, we
then obtain a system of homogeneous ideals {EY }.

We will show that Z can be recovered from the system {EY }; see Corollary 5.2.1.
The underlying philosophy is to find enough Hodge-theoretic data associated to a
Hodge class γ so that an algebraic realization Z may be constructed; this work may
be considered as a basic step toward understanding the Hodge conjecture from a
constructive viewpoint.

1.2. In [4, Corollary (4.a.8)] it was shown that when a smooth curve C ⊂ P3 is non-
special in the sense that H1(C,NC|P3) = 0, its defining equations are determined
by Hodge-theoretic data. The result above may be considered as analogous.
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In [2, 6, 7, 8] the geometry of the Noether-Lefschetz locus NL(γ) is used to con-
struct cycles Z solving the Hodge conjecture for γ under the assumption thatNL(γ)
contains a component of large dimension. The ideal E (and its generalizations) is
one of the main tools used to prove these results.

2. Notation and positivity conditions

2.1. Throughout this article X will denote a fixed complex projective smooth vari-
ety of dimension 2n+ 1, O(1) denotes a fixed ample line bundle, and Z denotes a
smooth subvariety of dimension n with ideal sheaf I. Let N = NZ|X = (I/I2)∨.

Denote by S =
⊕

Sk the graded algebra with Sk = H0(X,O(k)). Then we have
X ∼= Proj(S). Let M be the graded S-module with Mk = H0(X,KX(k)).

Denote by S̄ the graded algebra with S̄k = H0(Z,OZ(k)), where OZ(1) :=
O(1)|Z . Then we have a natural homomorphism S → S̄. Let I be its kernel. Then
Ik = H0(X, I(k)) is the vector space of sections of O(k) vanishing along Z. We
have Z ∼= Proj(S̄) ∼= Proj(S/I), whose inclusion in X is induced by S → S̄. Let M̄
be the graded S̄-module with M̄k = H0(Z,KX |Z(k)). Then we have a restriction
map M → M̄ ; denote its kernel by K.

2.2. We will need various positivity assumptions:

• (B) : H>0(X,Ω�
X(kd)) = 0 for all k ≥ 1, � ≥ 0, and d ≥ d0.

• (M) : Sa ⊗M b −→ Ma+b is surjective for all a ≥ a0 and b ≥ b0.
• (S) : I(d) → N∨(d) is surjective on global sections for all d ≥ d0.
• (Z) : OZ(c0) is very ample and N∨(d − c0) is globally generated for some
c0 ≥ 1 and for all d ≥ d0.

For sufficiently large a0, b0, c0, d0 these conditions hold since O(1) is ample and

• (B) : Ω�
X = 0 when � > dim(X), and the cohomological criterion of ample-

ness [5, Chapter III, Proposition 5.3].
• (M) : [1, Lemma 1.28].
• (S) : we have a sheaf surjection I → N∨, and [5, Chapter III, Proposi-
tion 5.3].

• (Z) : we have Hi(Z,F ⊗O(c)) ∼= Hi(X, (i∗F)(c)) by [5, Chapter III, Exer-
cise 8.1] and the projection formula, for any coherent sheaf F on Z. Then
by [5, Chapter III, Proposition 5.3] we know that OZ(c) is very ample for
all sufficiently large c.

3. Homogeneous ideal associated to a vanishing class

3.1. Let Y ⊂ X be a smooth divisor in H0(O(d)) with d sufficiently large so that
condition (B) in §2.2 is satisfied with d0 = d. We can then express the Hodge
decomposition ofH2n(Y,C)van purely in terms of algebra; see for example [9, section
6.1.2] and [3, Lecture 4]. More precisely, we have residue maps

rpd : Mpd = H0(KX(pd)) � H2n−p+1,p−1(Y )van.

In particular every vanishing Hodge class γ of degree 2n is of the form r(n+1)d(ω)
for some ω ∈ M (n+1)d.

The non-degenerate intersection pairing on H2n(Y )van can also be understood
in terms of the module M : There is a non-zero linear functional

λ : W := H0(X,KX((n+ 1)d)⊗2) → C
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such that the pairing between the Hodge groups of complementary bi-degrees is
induced by the composition

Mpd ⊗M (2n+2−p)d −→ W
λ−→ C,

where the first map is induced by the tensor product.
Moreover, the Gauss-Manin connection on the smooth locus ofH0(O(d)) is given

by the multiplication map. More precisely we have the following commutative
diagram:

Sd ⊗Mpd multiplication
��

����

M (p+1)d

����

H0(Y,NY |X)⊗H2n−p+1,p−1(Y )van
∇ �� H2n−p,p(Y )van

3.2. Now let γ be a vanishing Hodge class of degree 2n on Y ; we will denote also
by γ a preimage under r(n+1)d in M (n+1)d. It then defines a linear functional
(−).γ : ω 	→ λ(ω ⊗ γ) on M (n+1)d, non-zero if γ is non-zero, since the intersection
pairing on vanishing cohomology is non-degenerate. Now we define

Ek := {P ∈ Sk | (PM (n+1)d−k).γ = 0},

and dually

F (n+1)d−k := {ω ∈ M (n+1)d−k | (Skω).γ = 0}.
In other words, they are kernels with respect to the pairing

Sk ⊗M (n+1)d−k −→ M (n+1)d (−).γ−→ C.

It is easy to see that E :=
⊕

Ek is a homogeneous ideal in S. This construction
was studied in [6, section 1.2]; in fact the ideal E here is called E0 in [6], where a
family of homogeneous ideals {Er | r ≥ −1} is constructed.

3.3. The ideal E constructed above is considered to contain information about
the Noether-Lefschetz locus NL(γ) ⊂ H0(O(d)) associated to γ, which consists of
smooth divisors Y ∈ H0(O(d)) on which the flat transport of γ is still a Hodge
class. For example, using the description of the Gauss-Manin connection above, it
is easy to see that Ed ⊂ Sd is the tangent space to NL(γ) at Y . See [6, 1.2.3] for
a geometric interpretation of some other pieces of the ideals Er.

4. Homogeneous ideals associated to a smooth subvariety

4.1. For any given d, if Y ∈ Id is a smooth divisor, then we may apply §3.1 to the
vanishing class γY , defined as the image of [Z] in the vanishing cohomology of Y ,
and obtain a homogeneous ideal EY . In the case when d is sufficiently large so that
(B) is satisfied with d0 = d, we denote also by γY ∈ M (n+1)d a preimage under the
residue map of γY and by (−).γY the corresponding functional on M (n+1)d.

Proposition 4.1.1. For any fixed integer k sufficiently large so that (B) holds with
d0 = k, we have Ik ⊂ Ek

Y for every smooth Y in Id with d sufficiently greater than
k.
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Proof. First assume d = k, in which case the containment is clear since Ik consists
of sections of O(k) vanishing on Z, while Ek

Y is the tangent space to NL(γY ) at
the hypersurface Y ; see §3.3.

Now suppose d is sufficiently large so that condition (M) is satisfied with a0 =
d − k and b0 = nd. Then we have Sd−kMnd = M (n+1)d−k. Let P ∈ Ik. Then
PSd−k ⊂ Id ⊂ Ed

Y by the case above for any smooth Y in Id. Hence we have

0 = (PSd−kMnd).γY = (PM (n+1)d−k).γY , which says exactly that P ∈ Ek
Y . �

4.2. The functional (−).γY on M (n+1)d corresponding to the containments Z ⊂
Y ⊂ X can be described in terms of the geometry as explained in [3, Proposition
on page 49]: Let N̄ := NZ|Y . Then we have a short exact sequence of vector
bundles

0 −→ OZ(−d) −→ N∨ −→ N̄∨ −→ 0,

where the first map is the restriction to Z of the inclusion O(−d) → I given by the
defining equation of Y . Then by the construction in [3, page 39] and twisting by
OZ(nd) we get an exact sequence

0 −→ OZ −→ N∨(d) −→
2∧
N∨(2d) −→ · · · −→

n∧
N∨(nd) −→

n∧
N̄∨(nd) −→ 0

where all arrows except for the last two are given by contracting with the defining
equation of Y (restricted to Z).

Now we have KZ ⊗
∧n N̄∨ ∼= KY |Z ∼= KX(d)|Z ∼= KZ ⊗

∧n+1 N∨(d) by the
adjunction formula. Hence we can rewrite the sequence above as

0−→OZ −→N∨(d)−→
2∧
N∨(2d)−→· · ·−→

n∧
N∨(nd)−→

n+1∧
N∨((n+ 1)d)−→0

where now every arrow is given by contracting with the defining equation of Y .
Twisting this last sequence by KZ we get

(4.1)

0 −→ KZ −→KZ ⊗N∨(d) −→ · · · −→ KZ ⊗
n∧
N∨(nd) −→ KX |Z((n+1)d) −→ 0.

Every element in M̄ (n+1)d = H0(Z,KX |Z((n+1)d)) can be viewed as a morphism

OZ −→ KX |Z((n+ 1)d),

which gives by pulling-back (4.1) an extension of OZ by KZ , namely an element in
Extn(OZ ,KZ) ∼= Hn(Z,KZ) ∼= C.

The construction above gives the map α in the following commutative (up to a
non-zero scalar multiple) diagram:

H0(X,KX((n+ 1)d))
β

��

r(n+1)d

��

H0(Z,KX |Z((n+ 1)d))

α

��

Hn(Y,Ωn
Y )

δ �� Hn(Z,Kn
Z) ∼=

λ �� C

Here β is the restriction map from M (n+1)d to M̄ (n+1)d as in §2.1, δ is the restric-
tion map, and r(n+1)d is the residue map as in §3.1, whose image is Hn,n(Y )van.
The composition λ◦ δ ◦ r(n+1)d is by definition the functional (−).γY , which is then
equal to λ ◦ α ◦ β. Note that as long as [Z] is non-zero, the map δ is not zero, but
the composition δ ◦ r(n+1)d could be zero: this happens exactly when the vanishing
component γY of [Z] is zero.
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Given the sequence (4.1), an element OZ → KX |Z((n+1)d) in M̄ (n+1)d maps to
zero in Extn(OZ ,KZ) if and only if it lifts to a morphism OZ → KZ ⊗

∧n N∨(nd);
hence we can describe the kernel of (−).γY as follows:

Lemma 4.2.1. Given an element P1 ∈ Id defining a smooth divisor Y , let Q1

be its image in H0(N∨(d)). Then the kernel of the functional (−).γY on M (n+1)d

consists of elements whose images in M̄ (n+1)d lie in Q1 ∧ H0(KZ ⊗
∧n N∨(nd))

under the wedge product map

H0(N∨(d))⊗H0(KZ ⊗
n∧
N∨(nd))

∧−→ M̄ (n+1)d.

5. Recovering a smooth subvariety from its associated ideals

5.1. We will need the following lemmas:

Lemma 5.1.1. Let � be an integer sufficiently large so that KX(�) is base-point-
free. If P in Sk satisfies PM � ⊂ K = ker(M → M̄), then it also satisfies PS� ⊂ I.

Proof. The condition PM � ⊂ K implies that Pω vanishes along Z for every ω ∈
M � = H0(KX(�)). Since the line bundle KX(�) is base-point-free, for every point
z ∈ Z we can find a global section ω not vanishing at z. Hence P must vanish at
z, for every z ∈ Z. �
Lemma 5.1.2. Suppose OZ(c0) is very ample and N∨(d−c0) is globally generated;
namely condition (Z) holds. For every non-zero element R ∈ Sc0 there is an element
Q′ ∈ H0(N∨(d− c0)) such that RQ′ �= 0 in H0(N∨(d)).

Proof. For any z ∈ Z at which R is non-zero, find Q′ also not vanishing at z. �
Lemma 5.1.3. Suppose OZ(c0) is very ample. If η ∈ M̄ (n+1)d lies in RM̄ (n+1)d−c0

for every non-zero R ∈ S̄c0 = H0(Z,OZ(c0)), then η = 0.

Proof. The condition implies that η as a global section of KX |Z((n+1)d) vanishes
along the divisor Z(R) on Z. But OZ(c0) is very ample; hence every point z ∈ Z
is contained in Z(R) for some non-zero R. �
5.2. For any fixed k we denote by d 
 k that condition (M) is satisfied for a0 = d−k
and b0 = nd; notice that if d1 ≥ d and d 
 k, then d1 
 k. With the notation as
in §4.1, define

Jk
d :=

⋂

smoothY ∈Id

Ek
Y

and
Jk :=

⋂

d
k

Jk
d .

Then J :=
⊕

Jk is a homogeneous ideal, and we have I ⊂ J in all sufficiently large
degrees by Proposition 4.1.1.

Theorem 5.2.1. For every element P ∈ J of sufficiently large degree, there is an
integer � such that PS� ⊂ I.

Proof. Fix an integer k sufficiently large so that condition (B) holds with d0 = k,
and fix any d 
 k so that moreover conditions (S) and (Z) are satisfied with d0 = d
and some c0. Let P ∈ Sk be an element which does not satisfy the conclusion of
the statement, and we will show that P does not lie in J .
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By Lemma 5.1.1 the assumption on P implies that for all sufficiently large inte-
gers e′ we have PMe′

� K = ker(M → M̄). Replacing d with a larger integer if

necessary, we can find e := (n+1)d−k sufficiently large satisfying PMe ⊂ M (n+1)d

and PMe � K. Let η ∈ M̄ (n+1)d be any non-zero element in the image PMe of

PMe in M̄ (n+1)d.
Now consider the following commutative diagram:

S̄c0 ⊗H0(N∨(d− c0))⊗H0(KZ ⊗
∧n N∨(nd))

∧ ��

��

S̄c0 ⊗ M̄ (n+1)d−c0

��

H0(N∨(d))⊗H0(KZ ⊗
∧n

N∨(nd))
∧ �� M̄ (n+1)d

where the horizontal maps are the wedge product and the vertical ones are multi-
plication.

We claim that there exists a non-zero element Q1 ∈ H0(N∨(d)) such that η
does not lie in Q1 ∧H0(KZ ⊗

∧n N∨(nd)). Suppose to the contrary that for every
non-zero Q1 we have

η ∈ Q1 ∧H0(KZ ⊗
n∧
N∨(nd)).

Then by Theorem 5.1.2, for every non-zero element R ∈ S̄c0 we can find Q′ ∈
H0(N∨(d− c0)) such that RQ′ �= 0 and therefore η ∈ RQ′∧H0(KZ ⊗

∧n
N∨(nd)).

But this implies

η ∈ RM̄ (n+1)d−c0 ,

which implies that η = 0 by Lemma 5.1.3, a contradiction.
Note that the set of non-zero Q1 satisfying the condition η /∈ Q1 ∧ H0(KZ ⊗∧n
N∨(nd)) is a Zariski open subset of H0(N∨(d)), and we just showed it is non-

empty.
By condition (S) we can lift any Q1 as above to an element P1 ∈ Id, and we can

find such a P1 defining a smooth divisor Y on X containing Z. So by Lemma 4.2.1
we know that PMe is not contained in the kernel of (−).γY . In other words,
P /∈ Ek

Y ; hence P /∈ Jk as required. �

Corollary 5.2.1. The subvariety Z can be recovered from J . More precisely, Z ∼=
Proj(S/J).

Proof. Indeed, in all sufficiently large degrees, J lies between the ideal I and its
saturation in S; see [5, Ex. 2.14 and Ex. 5.10]. �

Remark 5.2.2. In its stated form Corollary 5.2.1 requires the knowledge of all
smooth divisors Y containing Z, and such knowledge clearly already determines
Z. But the proof gives more: Suppose the saturation Ī of I is generated by its
degree e homogeneous piece Īe and we have Z ⊂ Y with deg(Y ) = d sufficiently
large. This defines EY , which may be viewed as a first approximation of I. The
proof of Corollary 5.2.1 says that for every element P in Ee

Y but not in Īe we can
find another Y ′ containing Z and possibly of higher degree, so that P does not
lie in EY ′ . Therefore we can take EY ∩ EY ′ as a refinement. Since Īe is finite
dimensional, a finite intersection (EY ∩ EY ′ ∩ EY ′′ ∩ . . .)e will be contained in Īe,
and then Z is determined by these finitely many divisors Y, Y ′, Y ′′, . . . .
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