Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Asymptotic distributions of the zeros of a family of hypergeometric polynomials


Authors: Jian-Rong Zhou, H. M. Srivastava and Zhi-Gang Wang
Journal: Proc. Amer. Math. Soc. 140 (2012), 2333-2346
MSC (2010): Primary 33C05, 33C20; Secondary 30C15, 33C45
DOI: https://doi.org/10.1090/S0002-9939-2011-11117-1
Published electronically: November 17, 2011
MathSciNet review: 2898696
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The main object of this paper is to consider the asymptotic distribution of the zeros of certain classes of the Gauss hypergeometric polynomials. Some classical analytic methods and techniques are used here to analyze the behavior of the zeros of the Gauss hypergeometric polynomials,

$\displaystyle \;_2F_1(-n, a; -n+b;z),$

where $ n$ is a nonnegative integer. Owing to the connection between the classical Jacobi polynomials and the Gauss hypergeometric polynomials, we prove a special case of a conjecture made by Martínez-Finkelshtein, Martínez-González and Orive. Numerical evidence and graphical illustrations of the clustering of the zeros on certain curves are generated by Mathematica (Version 4.0).

References [Enhancements On Off] (What's this?)

  • 1. W. N. Bailey, Generalized Hypergeometric Series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 32, Cambridge University Press, Cambridge, London and New York, 1935. Reprinted by Stechert-Hafner Service Agency, New York and London, 1964. MR 0185155 (32:2625)
  • 2. K. Boggs and P. Duren, Zeros of hypergeometric functions, Comput. Methods Funct. Theory 1 (2001), 275-287. MR 1931616 (2003k:33003)
  • 3. P. B. Borwein and W. Chen, Incomplete rational approximation in the complex plane, Constr. Approx. 11 (1995), 85-106. MR 1323965 (95k:41024)
  • 4. K.-Y. Chen and H. M. Srivastava, A new result for hypergeometric polynomials, Proc. Amer. Math. Soc. 133 (2005), 3295-3302. MR 2161152 (2006d:33011)
  • 5. D. Dominici, K. Driver and K. Jordaan, Polynomial solutions of differential-difference equations, J. Approx. Theory 163 (2011), 41-48. MR 2741218 (2011m:33019)
  • 6. K. Driver and P. Duren, Zeros of the hypergeometric polynomials $ F(-n,b;2b;z)$, Indag. Math. $ ($New Ser.$ )$ 11 (2000), 43-51. MR 1809661 (2002d:33006)
  • 7. K. Driver and K. Jordaan, Zeros of $ _3F_2(-n,b,c;d,e;z)$ polynomials, Numer. Algorithms 30 (2002), 323-333. MR 1927508 (2003j:33018)
  • 8. K. Driver and K. Jordaan, Asymptotic zero distribution of $ _3F_2$ polynomials, Indag. Math. $ ($New Ser.$ )$ 14 (2003), 319-327. MR 2083078 (2005f:33004)
  • 9. K. Driver and K. Jordaan, Separation theorems for the zeros of certain hypergeometric polynomials, J. Comput. Appl. Math. 199 (2007), 48-55. MR 2267530 (2007m:33009)
  • 10. K. Driver and K. Jordaan, Pólya frequency sequences and real zeros of some $ _3F_2$ polynomials, J. Math. Anal. Appl. 332 (2007), 1045-1055. MR 2324318 (2009m:33013)
  • 11. K. Driver, K. Jordaan and N. Mbuyi, Interlacing of zeros of linear combinations of classical orthogonal polynomials from different sequences, Appl. Numer. Math. 59 (2009), 2424-2429. MR 2553144 (2011b:33017)
  • 12. K. Driver and M. Möller, Zeros of the hypergeometric polynomials $ F(-n,b;-2n;z)$,
    J. Approx. Theory 110 (2001), 74-87. MR 1826086 (2002c:33001)
  • 13. P. Duren and B. J. Guillou, Asymptotic properties of zeros of hypergeometric polynomials, J. Approx. Theory 111 (2001), 329-343. MR 1849553 (2002f:33011)
  • 14. A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. I, McGraw-Hill Book Company, New York, Toronto and London, 1953. MR 0058756 (15:419i)
  • 15. E. Hille, Analytic Function Theory, Vol. II, Chelsea Publishing Company, Bronx, New York, 1973. MR 0201608 (34:1490)
  • 16. A. B. J. Kuijlaars, A. Martínez-Finkelshtein, Strong asymptotics for Jacobi polynomials with varying nonstandard parameters, J. Analyse Math. 94 (2004), 195-234. MR 2124460 (2005k:33006)
  • 17. A. B. J. Kuijlaars, A. Martínez-Finkelshtein and R. Orive, Orthogonality of Jacobi polynomials with general parameters, Electron. Trans. Numer. Anal. 19 (2005), 1-17. MR 2149265 (2006e:33010)
  • 18. M. Marden, Geometry of Polynomials, American Mathematical Society, Providence, Rhode Island, 1996. MR 0225972 (37:1562)
  • 19. A. Martínez-Finkelshtein, P. Martínez-González and R. Orive, Zeros of Jacobi polynomials with varying nonclassical parameters, in: Special Functions (Hong Kong, 1999), World Scientific Publishing Company, River Edge, NJ (2000), 98-113. MR 1805976 (2002d:33017)
  • 20. A. Martínez-Finkelshtein and R. Orive, Riemann-Hilbert analysis for Jacobi polynomials orthogonal on a single contour, J. Approx. Theory 134 (2005), 137-170. MR 2142296 (2006e:33013)
  • 21. P. Martínez-González and A. Zarzo, Higher order hypergeometric Lauricella function and zero asymptotics of orthogonal polynomials, J. Comput. Appl. Math. 233 (2010), 1577-1583. MR 2559348 (2011b:42092)
  • 22. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985. MR 834385 (87f:33015)
  • 23. H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984. MR 750112 (85m:33016)
  • 24. H. M. Srivastava, J.-R. Zhou and Z.-G. Wang, Asymptotic distributions of the zeros of certain classes of hypergeometric functions and polynomials, Math. Comput. 80 (2011), 1769-1784. MR 2785478
  • 25. G. Szegö, Orthogonal Polynomials, Fourth edition, American Mathematical Society Colloquium Publications, Vol. 23, American Mathematical Society, Providence, Rhode Island, 1975. MR 0372517 (51:8724)
  • 26. N. M. Temme, Large parameter cases of the Gauss hypergeometric function, J. Comput. Appl. Math. 153 (2003), 441-462. MR 1985714 (2004f:33006)
  • 27. J.-R. Zhou and Y.-Q. Zhao, An infinite asymptotic expansion for the extreme zeros of the Pollaczek polynomials, Stud. Appl. Math. 118 (2007), 255-279. MR 2305779 (2008e:33025)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 33C05, 33C20, 30C15, 33C45

Retrieve articles in all journals with MSC (2010): 33C05, 33C20, 30C15, 33C45


Additional Information

Jian-Rong Zhou
Affiliation: Department of Mathematics, Foshan University, Foshan 528000, Guangdong Province, People’s Republic of China
Email: zhoujianrong2012@163.com

H. M. Srivastava
Affiliation: Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada
Email: harimsri@math.uvic.ca

Zhi-Gang Wang
Affiliation: School of Mathematics and Computing Science, Changsha University of Science and Technology (Yuntang Campus), Changsha 410114, Hunan Province, People’s Republic of China
Email: wangmath@163.com

DOI: https://doi.org/10.1090/S0002-9939-2011-11117-1
Keywords: Gauss hypergeometric function and polynomials, asymptotic distribution of zeros, zeros of $_{2}F_{1}(-n, a; -n+b;z)$, Jacobi polynomials, hypergeometric reduction formulas, Euler-Mascheroni constant, Vitali’s theorem, Hurwitz’s theorem, Eneström-Kakeya theorem, hypergeometric identity, Mathematica (Version 4.0).
Received by editor(s): March 26, 2010
Received by editor(s) in revised form: August 10, 2010, and February 14, 2011
Published electronically: November 17, 2011
Communicated by: Walter Van Assche
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society