Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The exceptional set in Vojta's conjecture for algebraic points of bounded degree


Author: Aaron Levin
Journal: Proc. Amer. Math. Soc. 140 (2012), 2267-2277
MSC (2010): Primary 11J97; Secondary 11J25
DOI: https://doi.org/10.1090/S0002-9939-2011-11147-X
Published electronically: November 1, 2011
MathSciNet review: 2898690
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the dependence on various parameters of the exceptional set in Vojta's conjecture. In particular, by making use of certain elliptic surfaces, we answer in the negative the often-raised question of whether
Vojta's conjecture holds when extended to all algebraic points (that is, if the conjecture holds without fixing a bound on the degree of the algebraic points).


References [Enhancements On Off] (What's this?)

  • 1. P. Autissier, A. Chambert-Loir, and C. Gasbarri, On the canonical degrees of curves in varieties of general type, arXiv:1003.3804v1 [math.AG] (preprint).
  • 2. E. Bombieri and W. Gubler, Heights in Diophantine geometry, New Mathematical Monographs, vol. 4, Cambridge University Press, Cambridge, 2006. MR 2216774 (2007a:11092)
  • 3. W. Cherry, The Nevanlinna error term for coverings, generically surjective case, Proceedings Symposium on Value Distribution Theory in Several Complex Variables (Notre Dame, IN, 1990), Notre Dame Math. Lectures, vol. 12, Univ. Notre Dame Press, 1992, pp. 37-53. MR 1243017 (95b:30040)
  • 4. R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York, 1977. MR 0463157 (57:3116)
  • 5. M. Hindry and J. H. Silverman, Diophantine geometry. An introduction, Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000. MR 1745599 (2001e:11058)
  • 6. S. Kobayashi and T. Ochiai, Mappings into compact complex manifolds with negative first Chern class, J. Math. Soc. Japan 23 (1971), 137-148. MR 0288316 (44:5514)
  • 7. K. Kodaira, On the structure of compact complex analytic surfaces. I, Amer. J. Math. 86 (1964), 751-798. MR 0187255 (32:4708)
  • 8. S. Lang, The error term in Nevanlinna theory. II, Bull. Amer. Math. Soc. (N.S.) 22 (1990), no. 1, 115-125. MR 1003864 (90k:32080)
  • 9. -, Number theory. III. Diophantine geometry, Encyclopaedia of Mathematical Sciences, vol. 60, Springer-Verlag, Berlin, 1991. MR 1112552 (93a:11048)
  • 10. S. Lang and W. Cherry, Topics in Nevanlinna theory, Lecture Notes in Mathematics, vol. 1433, Springer-Verlag, Berlin, 1990, with an appendix by Zhuan Ye. MR 1069755 (91k:32025)
  • 11. A. Levin, D. McKinnon, and J. Winkelmann, On the error terms and exceptional sets in conjectural second main theorems, Q. J. Math. 59 (2008), no. 4, 487-498. MR 2461270 (2010f:11127)
  • 12. K. Mahler, An inequality for the discriminant of a polynomial, Michigan Math. J. 11 (1964), 257-262. MR 0166188 (29:3465)
  • 13. M. McQuillan, Old and new techniques in function field arithmetic, preprint.
  • 14. R. Miranda, The basic theory of elliptic surfaces, Dottorato di Ricerca in Matematica [Doctorate in Mathematical Research], ETS Editrice, Pisa, 1989. MR 1078016 (92e:14032)
  • 15. Y. Miyaoka, The orbibundle Miyaoka-Yau-Sakai inequality and an effective Bogomolov-McQuillan theorem, Publ. Res. Inst. Math. Sci. 44 (2008), no. 2, 403-417. MR 2426352 (2009g:14043)
  • 16. T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 20-59. MR 0429918 (55:2927)
  • 17. -, The $ abc$-theorem, Davenport's inequality and elliptic surfaces, Proc. Japan Acad. Ser. A Math. Sci. 84 (2008), no. 4, 51-56. MR 2409500 (2009g:14040)
  • 18. X. Song and T. Tucker, Dirichlet's theorem, Vojta's inequality, and Vojta's conjecture, Compositio Math. 116 (1999), no. 2, 219-238. MR 1686848 (2000d:11085)
  • 19. C. L. Stewart and R. Tijdeman, On the Oesterlé-Masser conjecture, Monatsh. Math. 102 (1986), no. 3, 251-257. MR 863221 (87k:11077)
  • 20. M. van Frankenhuijsen, A lower bound in the $ abc$ conjecture, J. Number Theory 82 (2000), no. 1, 91-95. MR 1755155 (2001m:11109)
  • 21. -, $ ABC$ implies the radicalized Vojta height inequality for curves, J. Number Theory 127 (2007), no. 2, 292-300. MR 2362438 (2008j:11087)
  • 22. P. Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Mathematics, vol. 1239, Springer-Verlag, Berlin, 1987. MR 883451 (91k:11049)
  • 23. -, A refinement of Schmidt's subspace theorem, Amer. J. Math. 111 (1989), no. 3, 489-518. MR 1002010 (90f:11054)
  • 24. -, A more general $ abc$ conjecture, Internat. Math. Res. Notices (1998), no. 21, 1103-1116. MR 1663215 (99k:11096)
  • 25. K. Yamanoi, The second main theorem for small functions and related problems, Acta Math. 192 (2004), no. 2, 225-294. MR 2096455 (2006g:30050)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11J97, 11J25

Retrieve articles in all journals with MSC (2010): 11J97, 11J25


Additional Information

Aaron Levin
Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
Email: adlevin@math.msu.edu

DOI: https://doi.org/10.1090/S0002-9939-2011-11147-X
Received by editor(s): November 2, 2010
Received by editor(s) in revised form: February 20, 2011
Published electronically: November 1, 2011
Additional Notes: This research was partially supported by NSF grant DMS-0635607
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society