Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On a characterization of bilinear forms on the Dirichlet space


Authors: Carme Cascante and Joaquin M. Ortega
Journal: Proc. Amer. Math. Soc. 140 (2012), 2429-2440
MSC (2010): Primary 31C25, 31C15, 47B35
DOI: https://doi.org/10.1090/S0002-9939-2011-11409-6
Published electronically: November 15, 2011
MathSciNet review: 2898705
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Arcozzi, Rochberg, Sawyer and Wick obtained a characterization of the holomorphic functions $ b$ such that the Hankel type bilinear form $ T_{b}(f,g)= \int _{\D }(I+R)(fg)(z) \overline {(I+R)b(z)}dv(z)$ is bounded on $ {\mathcal D}\times {\mathcal D}$, where $ {\mathcal D}$ is the Dirichlet space. In this paper we give an alternative proof of this characterization which tries to understand the similarity with the results of Maz$ '$ya and Verbitsky relative to the Schrödinger forms on the Sobolev spaces $ L_2^1(\mathbb{R}^n)$.


References [Enhancements On Off] (What's this?)

  • 1. D.R. Adams and L.I. Hedberg: Function spaces and potential theory. Grundlehren der Mathematischen Wissenschaften 314. Springer-Verlag, Berlin, 1996. MR 1411441 (97j:46024)
  • 2. P. Ahern and J. Bruna: Maximal and area integral characterizations of Hardy-Sobolev spaces in the unit ball of $ \mathbb{C}^n$. Revista Matemática Iberoamericana 4 (1988), 123-152. MR 1009122 (90h:32011)
  • 3. P. Ahern and W. Cohn: Exceptional sets for Hardy Sobolev functions, $ p>1$. Indiana Univ. Math. J. 38 (1989), 417-453. MR 997390 (90m:32013)
  • 4. N. Arcozzi, R. Rochberg, E. Sawyer and B.D. Wick: Bilinear forms on the Dirichlet space, Analysis & PDE 3 (2010), no. 1, 21-47. MR 2663410 (2011f:31011)
  • 5. D. Békollé: Inégalité à poids pour le projecteur de Bergman dans la boule unité de $ {\bf C}^{n}$. Studia Math. 71 (1981/82), no. 3, 305-323. MR 667319 (83m:32004)
  • 6. A.P. Calderon: Lebesgue spaces of differentiable functions and distributions. Proc Sympos. Pure Math. Vol. IV, 33-49, American Mathematical Society, Providence, R.I. MR 0143037 (26:603)
  • 7. C. Cascante and J.M. Ortega: Carleson measures for weighted Hardy-Sobolev spaces. Nagoya Math. J. 186 (2007), 29-68. MR 2334364 (2008g:32011)
  • 8. C. Cascante and J.M. Ortega: Carleson measures for weighted holomorphic Besov spaces, Ark. Mat. 49 (2011), 31-59. MR 2784256
  • 9. V.G. Maz$ '$ya and T.O. Shaposhnikova: Theory of multipliers in spaces of differentiable functions, Monographs and Studies in Mathematics 23, Pitman, 1985. MR 785568 (87j:46074)
  • 10. V.G. Maz$ '$ya and I.E. Verbitsky: The Schrödinger operator on the energy space: boundedness and compactness criteria. Acta Math. 188 (2002), 263-302. MR 1947894 (2004b:35050)
  • 11. N.G. Meyers: A theory of capacities for potentials of functions in Lebesgue classes. Math. Scand. 26 (1971), 255-292. MR 0277741 (43:3474)
  • 12. D. Stegenga: Multipliers of the Dirichlet space. Illinois J. Math. 24 (1980), 113-139. MR 550655 (81a:30027)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 31C25, 31C15, 47B35

Retrieve articles in all journals with MSC (2010): 31C25, 31C15, 47B35


Additional Information

Carme Cascante
Affiliation: Departmento Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08071 Barcelona, Spain
Email: cascante@ub.edu

Joaquin M. Ortega
Affiliation: Departmento Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08071 Barcelona, Spain
Email: ortega@ub.edu

DOI: https://doi.org/10.1090/S0002-9939-2011-11409-6
Keywords: Dirichlet spaces, Carleson measures
Received by editor(s): February 23, 2011
Published electronically: November 15, 2011
Additional Notes: The authors were partially supported by DGICYT Grant MTM2011-27932-C02-01, DURSI Grant 2009SGR 1303 and Grant MTM2008-02928-E
Communicated by: Richard Rochberg
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society